Supporting Information

Efficient Electrochromic Device Based on Nanoparticulate WO₃ Thin Films

Dhanaji S. Dalavi^a, Rupesh S. Devan^b, Ranjit A. Patil,^b Raghunath S. Patil^c, Yuan-Ron. Ma,^b Shivaji B. Sadale^d, In-Young Kim^e, Jin-Hyeok Kim^e, Pramod S. Patil*^{a,e}

^aThin Film Materials laboratory, Department of Physics, Shivaji University,

Kolhapur - 416004, M.S., India, Fax: +91-231-2691533; Tel: +91-231-2609420

^bDepartment of Physics, National Dong Hwa University, Hualien 97401, Taiwan

[°]Department of Physics, The New College, Kolhapur - 416012, India

^dDepartment of Technology, Shivaji University, Kolhapur

^eDept. of Materials Science, Chonnam National University, Gwangju, 500-757, South Korea. E-mail: psp_phy@unishivaji.ac.in; jinhyeok@chonnam.ac.kr

Fig.S1 Side view of WO₃ thin film deposited on ITO coated conducting glass substrate.

Fig.S2 Energy-dispersive X-ray spectrum of NP-WO3 thin film

Fig.S3 Measured spectral reflectance for NP-WO₃ thin film as a function of applied potentials

Fig. S4 (a*, b*) showing the hue and saturation for NP-WO₃ thin film at different applied potentials, $a^* = red (+) / green (-)$, and $b^* = yellow (+) / blue (-)$.

XPS Analysis

Table 2 – Peak positions, FWHMs and Area under peaks of the decomposed W (4f) XPS spectra of shown in Fig. 3 (a and b).

Bleached State		Colored State	
Peak Position	FWHM	Peak Position	FWHM
(eV)		(eV)	
35.89 W ⁶⁺	1.25	35.66 W ⁶⁺	1.27
38.00 W^{6+}	1.26	37.76 W ⁶⁺	1.32
34.61 W ⁵⁺	1.00	34.34 W^{5+}	1.23
36.98 W ⁵⁺	0.5	36.89 W ⁵⁺	0.56