Electronic Supplementary Information

Stacking-induced broadband near-infrared absorption beyond 2500

nm and deep-red phosphorescence from purely organic radicals

Guo-Ping Yong,* Yu-Mei Zhao, Ya Feng, and Xue-Rui Zhang

Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China E-mail: gpyong@ustc.edu.cn

Materials and physical measurements:

All reagents were commercially available and used without further purification. The FT-IR spectra (KBr disk, $4000-400 \text{ cm}^{-1}$) were recorded on a Bruker EQUINOX55 FT-IR spectrophotometer. High-resolution mass spectra (HRMS) were obtained on Micromass GCT-MS instrument operating in electron impact (EI) mode and time of flight (TOF) mass detector. The solution (10^{-4} M DMF) and solid-state UV/Vis/NIR absorption spectra were recorded at room temperature on a DUV-3700 UV/vis/NIR spectrometer. The solution (10^{-4} M DMF) photoluminescence (PL) spectra, and solid-state PL spectra and the decay lifetimes were determined at room temperature on a Fluorolog-3-TAU fluorescence spectrophotometer. The solid-state quantum yields were measured also on a Fluorolog-3-TAU fluorescence spectrophotometer equipped with a BaSO₄-coated integrating sphere. The quantum yields of solution state were measured at room temperature in a 10^{-4} M DMF solution using quinine sulfate ($\Phi = 0.54$) as a reference. Corrections were made due to the change in solvent refractive indices.^{S1} The EPR spectra were recorded on a JES-FA 200 ESR spectrometer at X-band. Thermogravimetric analyses were performed under N_2 atmosphere with a heating rate of 10 °C min⁻¹ with a Shimadzu TGA-50H thermogravimetric analyzer.

The X-ray diffraction measurements were performed on a Gemini S Ultra CCD diffractometer (Oxford diffraction Ltd.) using graphite monochromated Cu-Ka radiation ($\lambda = 1.54184$ Å). The structures were solved by direct method (SHELXL 97) and completed by difference Fourier method (SHELXL 97). Refinement was performed against F^2 by weighted full-matrix least-squares (SHELXL 97), and empirical absorption correction (SCALE3 ABSPACK) was applied. All non-hydrogen atoms were refined with anisotropic displacement parameters. The C–H hydrogen atoms were placed in geometrically calculated positions; the N–H and O–H hydrogen atoms were located in the difference Fourier map and kept fixed in that position. Weighted *R* factor (R_w) and all goodness of fit S are based on F^2 , conventional *R* factor (*R*) is based on *F*.

Synthesis of 3-formyl-2,3'-biimidazo[1,2-*a*]pyridin-2'-one derivatives 1 and 2:

3-Formyl-2,3'-biimidazo[1,2-*a*]pyridin-2'-one (Hfbipo⁻⁺) was synthesized according to previous procedure.^{S2} KOH (2.24 g, 40 mmol) were added into 25 mL ethanol containing Hfbipo⁻⁺ (0.556 g, 2 mmol), and then acetophenone (1.4 mL, 10 mmol) was added. The reaction mixture was stirred at room temperature for 12 h, giving rise to the deep-green viscous solution, which was poured into 200 mL of water. The resulting deep-green suspension solution was acidified to pH 7 by acetic acid, leading to the orange suspension solution. After filtrated and washed with water, recrystallization of solid from DMF/H₂O (v/v, 2:1) afforded orange solid of **1**. Yield: 0.68 g (1.79 mmol, 89.5 %). IR (KBr, cm⁻¹): 3425(vs), 1647(vs), 1610(vs), 1556(s), 1518(s), 1487(s), 1353(m), 1335(m), 1282(s), 1245(m), 1218(s), 1175(m), 1110(w), 1040(m), 1014(m), 964(w), 890(w), 842(w), 811(w), 743(s), 697(m). HRMS (EI, m/z, [M]⁺): Calc. for C₂₃H₁₆N₄O₂: 380.25, Found: 380.

KOH (2.24 g, 40 mmol) were added into 25 mL ethanol containing Hfbipo^{-•} (0.556 g, 2 mmol), and then 4-acetylpyridine (0.60 g, 5 mmol) was added. The reaction mixture was stirred at room temperature for 8 h, giving rise to the brown viscous solution, which was poured into 200 mL of water. The resulting brown suspension solution was acidified to pH 7 by acetic acid, leading to the red suspension solution. After filtrated and washed with water, recrystallization of solid from DMF/H₂O (v/v, 5:3) afforded red solid of **2**. Yield: 0.36 g (0.94 mmol, 47.0 %). IR (KBr, cm⁻¹): 3319(vs), 1650(vs), 1609(vs), 1562(m), 1519(s), 1487(m), 1359(m), 1337(w), 1286(s), 1243(s), 1228(s), 1050(w), 957(m), 805(w), 751(m), 698(w), 646(w), 610(m). HRMS (EI, m/z, [M]⁺): Calc. for C₂₂H₁₅N₅O₂: 381.28, Found: 381.

Orange block crystals of $1 \cdot 2(H_2O)$ and red block crystals of $2 \cdot 2(H_2O)$ suitable for X-ray diffraction analysis were obtained by slowly decreasing temperature (from 65 °C to room temperature) during recrystallization procedure.

Fig. S1 ORTEP drawing of molecular structures of 1(a) and 2(b) with ellipsoids drawn at 50% probability.

Fig. S2 The dimer structure of **2** formed by the hydrogen bonds (black dashed lines) and intermolecular π - π interactions (grey dashed lines).

Fig. S3 1D chain structure of 2 formed by intermolecular close contacts.

Fig. S4 Dihedral angle between two imidazo[1,2-*a*]pyridine rings for 1 (a) and 2 (b).

Fig. S5 Room-temperature PL spectra of 1 and 2 in 10^{-4} M DMF solution, upon excitation at 365 nm.

Fig. S6 The decay lifetime curves of **1** and **2** at emission peak of 583 and 665 nm, respectively in the solid state. The lifetime (τ) is defined as the time in which the emission intensity decays to 1/e of the initial intensity (I_o), where e is the natural log constant and is equal to 2.718. (I = I_oe^{-(t/\tau)} => τ = t => I = (1/e) I_o).^{S3}

Fig. S7 Room-temperature solid-state excitation spectra of 1 and 2 under emission wavelengths of 583 and 665 nm, respectively.

Fig. S8 Solid-state EPR spectra of 1 and 2 at room temperature.

Fig. S9 TGA curves of 1 and 2.

Because one guest water molecule only forms weak hydrogen bonds with 1 (C23•••O4 (H₂O) = 3.093 Å and C3•••O4 = 2.989 Å), as described in crystal structure, this water molecule could easily be lost. As a result, TGA curve of microcrystal sample of 1 only reveals the loss of one guest water molecule, however, microcrystal sample of 2 exhibits the loss of two guest water molecules from TGA curve which is consistent with crystal structure.

Reference

S1 C. F. Li, G. P. Yong and Y. Z. Li, Inorg. Chem. Commun., 2010, 13, 179–182.

- S2 Y. Z. Li, G. P. Yong, Y. M. Zhang, C. F. Li and W. L. She, *Synth. Met.*, 2011, **161**, 713–717.
- S3 K. C. Stylianou, R. Heck, S.Y. Chong, J. Bacsa, J. T. A. Jones, Y. Z. Khimyak, D. Bradshaw and M. J. Rosseinsky, *J. Am. Chem. Soc.*, 2010, **132**, 4119–4130.