Supporting Information

Thiophenoazomethines: Electrochromic Materials Exhibiting Visible-to-Near-IR Color Changes and Tuneable Colors Contingent on Degree of Conjugation

Satyananda Barik,^{1,2†} Daminda Navarathne,^{1†} Maxence LeBorgne,^{1,3} W. G. Skene^{1*}

¹Laboratoire de caractérisation photophysique des matériaux conjugués Département de Chimie, Pavillon JA Bombardier, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7

²Current address: Institute of Chemical and Engineering Sciences 1 Pesek Road, Jurong Island Singapore-627833 Singapore

> ³Current address: Département de chimie Institut Universitaire de Technologie Besançon-Vesoul 30 Avenue de l'Observatoire - BP 1559 – 25009 Besançon cedex France

> > [†]Contributed equally to the manuscript

Corresponding Author Email: w.skene@umontreal.ca

Table of Contents

FIGURE S1. ABSORBANCE SPECTRA OF THIN-FILM OF 7 (-), 8 (-), 9 (-), 10 (-) AND 11(-) ON
GLASS SUBSTRATES
FIGURE S2. ABSORBANCE SPECTRA OF NEUTRAL 8 () IN SOLUTION RECORDED WITH THE
ADDITION OF FeCl ₃ (—) Followed by the addition of hydrazine hydrate (—)
FIGURE S3. ABSORBANCE SPECTRA OF 8 (—) WITH THE ADDITION OF TRIFLUOROACETIC ACID (—)
FOLLOWED BY THE ADDITION OF TRIETHYLAMINE (—)
FIGURE S4. GEL PERMEATION ELUGRAMS OF $7(\blacksquare)$, $8(\bullet)$, $9(\blacktriangle)$, $10(\triangledown)$ and $11(\diamondsuit)$ measured in
THF
FIGURE S5. ANODIC CYCLIC VOLTAMMOGRAMS OF 9 measured in dichloromethane with
$TBAPF_6$ as the supporting electrolyte7
FIGURE S6. ANODIC CYCLIC VOLTAMMOGRAMS OF 10 measured in dichloromethane with
TBAPF_6 as the supporting electrolyte
FIGURE S7. CYCLIC VOLTAMMOGRAM (-) AND DIFFERENTIAL PULSE VOLTAMMOGRAMS (-) OF
11 in $10^{-4}\mathrm{M}$ polymer solution in $0.1~\mathrm{M}~\mathrm{TBAPF_{6}}$ /dichloromethane with ferrocene as
THE INTERNAL STANDARD. THE POTENTIALS ARE REPORTED AGAINST FC/FC^+
FIGURE S8. ¹ H NMR SPECTRUM OF 1 RECORDED IN ACETONE-D ₆
FIGURE S9. ¹ H NMR SPECTRUM OF 3 RECORDED IN CDCL ₃
FIGURE S10. ¹ H NMR SPECTRUM OF 6 RECORDED IN CDCL ₃
FIGURE S11. ¹ H NMR SPECTRUM OF 9 RECORDED IN CDCL ₃
FIGURE S12. ¹ H NMR SPECTRUM OF 10 MEASURED IN CDCL ₃
FIGURE S13. ¹ H NMR SPECTRUM OF 7 RECORDED IN ACETONE-D ₆
FIGURE S14. ¹³ C NMR SPECTRUM OF 7 RECORDED IN ACETONE-D ₆
FIGURE S15. ¹ H NMR SPECTRUM OF 8 RECORDED IN ACETONE-D ₆
FIGURE S16. ¹³ C NMR SPECTRUM OF 8 RECORDED IN ACETONE-D ₆
FIGURE S17. ¹ H NMR SPECTRUM OF 11 RECORDED IN ACETONE-D ₆

Figure S1. Absorbance spectra of thin-film of 7 (—), 8 (—), 9 (—), 10 (—) and 11(—) on glass substrates.

Figure S2. Absorbance spectra of neutral **8** (—) in solution recorded with the addition of FeCl₃ (—) followed by the addition of hydrazine hydrate (—).

Figure S3. Absorbance spectra of **8** (—) with the addition of trifluoroacetic acid (—) followed by the addition of triethylamine (—).

Figure S4. Gel permeation elugrams of $7(\blacksquare)$, $8(\bullet)$, $9(\blacktriangle)$, $10(\lor)$ and $11(\diamond)$ measured in THF.

Figure S5. Anodic cyclic voltammograms of 9 measured in dichloromethane with TBAPF₆ as the supporting electrolyte.

Figure S6. Anodic cyclic voltammograms of 10 measured in dichloromethane with TBAPF₆ as the supporting electrolyte.

Figure S7. Cyclic voltammogram (—) and differential pulse voltammograms (—) of **11** in 10⁻⁴M polymer solution in 0.1 M TBAPF₆/dichloromethane with ferrocene as the internal standard. The potentials are reported against Fc/Fc⁺.

Figure S8. ¹H NMR spectrum of **1** recorded in acetone-d₆.

Figure S9. ¹H NMR spectrum of **3** recorded in CDCl₃.

Figure S10. ¹H NMR spectrum of **6** recorded in CDCl₃.

Figure S11. ¹H NMR spectrum of **9** recorded in CDCl₃.

Figure S12. ¹H NMR spectrum of **10** measured in CDCl₃.

Figure S13. ¹H NMR spectrum of **7** recorded in acetone-d₆.

Figure S14. ¹³C NMR spectrum of **7** recorded in acetone-d₆.

Figure S15. ¹H NMR spectrum of **8** recorded in acetone-d₆.

Figure S16. ¹³C NMR spectrum of **8** recorded in acetone-d₆.

Figure S17. ¹H NMR spectrum of **11** recorded in acetone- d_6 .