Electronic Supplementary Information

Efficient work-function engineering of solution-processed MoS₂ thin-films for novel hole and electron transport layers leading to high-performance polymer solar cells

Jin-Mun Yun,^a Yong-Jin Noh,^b Jun-Seok Yeo,^a Yeong-Jin Go,^b Seok-In Na,^{*b} Hyung-Gu Jeong,^a Juhwan Kim,^a Sehyun Lee,^a Seok-Soon Kim,^c Hye Young Koo,^d Tae-Wook Kim,^d and Dong-Yu Kim,^{*a}

Experimental section

Preparation of MoS₂ nanosheets

All chemicals were purchased from Sigma-Aldrich and used without further purification. MoS_2 nanosheets were prepared by a slightly modified method published elsewhere.¹ Typically, natural MoS_2 powder (0.3 g) was immersed into 2.0 M n-buthyl lithium in a cyclohexane solution (4 mL) for 2 days under an inert atmosphere. The resultant Li_xMoS_2 was thoroughly washed with anhydrous hexane in order to remove un-intercalated n-buthyl lithium and organic residues. And then, Li_xMoS_2 powder was exfoliated by ultrasonication in distilled water for 1 h. Next, a small amount of LiCl was added into the resultant dispersion in order to precipitate MoS_2 nanosheets, which were centrifuged and washed with DI water several times to completely remove the lithium compounds. The resultant MoS_2 dispersion was stored under ambient temperature for 2 days. Finally, the produced MoS_2 was filtered and re-dispersed in DMF at a concentration of ~1 mgml⁻¹ and used for sample characterization and device fabrication.

Preparation of p- and n-doping solution

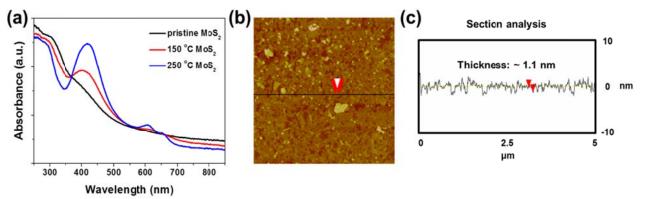
As a p-type dopant, gold chloride trihydrate (HAuCl₄·3H₂O) was dissolved into methanol at concentrations of 20, 10, and 1 mM through brief bath-sonication. For the n-type dopant, 0.1, 0.01, and 0.006 M of sodium borohydride (NaBH₄) solutions were prepared by addition into dimethylformamide (DMF): water mixture (9.5:0.5 v/v), and the resultant solution was briefly sonicated until the solution was clear.

Fabrication of n-PSCs

ITO-coated glass substrates were sequentially cleaned in an ultrasonic bath with detergent, acetone, deionized water, and isopropyl alcohol each for 10 min, and then dried in an oven at 100 °C for 30 min. All substrates were then treated with UV/O₃ for 30 min. To fabricate the MoS₂-based HTL, MoS₂ dispersed in DMF was spin-coated onto UV/O₃-treated ITO substrates at 3,000 rpm for 30 s in air, and subsequently annealed at 150 or 250 °C for 30 min in N₂-filled glove box. To dope the MoS₂ film with HAuCl₄, each doping solution (20, 10, and 1 mM HAuCl₄) was spin-casted onto 150 °C-annealed MoS₂ film at a rate of 3,000 rpm for 30 s in air, and subsequently dried for 15 min under an N₂ atmosphere. The *o*-dichlorobenzene (*o*-DCB) solution containing a 25 mgml⁻¹ of P3HT (Rieke Metals) and a 25 mgml⁻¹ of PCBM (Nano-C) was spin-coated onto the hole

extraction layer-coated substrate at 700 rpm for 60 s, and then the resultant active-coated substrate was kept in a glass jar at room temperature to allow the *o*-DCB solvent to evaporate slowly for 2 h in an N₂-filled glove box, followed by annealing at 120 °C for 15 min inside the glove box. Finally, top electrodes composed of Ca (20 nm)/Al (100 nm) with an area of 4.64 mm² were deposited using a thermal evaporator in vacuum with a pressure of 10^{-6} Torr.

Fabrication of i-PSCs


 MoS_2 -based ETLs were prepared by doping the MoS_2 film with $NaBH_4$, each doping solution (0.1, 0.01, and 0.006 M NaBH₄) was spin-casted onto 150 °C-annealed MoS_2 film at a rate of 3,000 rpm for 30 s in air, and subsequently dried for 15 min under an N_2 atmosphere. To construct a HTL, the PEDOT:PSS:iso-propyl alcohol solution (1:6 v/v) was spin-casted onto the prepared photoactive layer at 3,000 rpm for 30 s in air. Next, the resultant device was annealed at 120 °C for 10 min in an N_2 -filled glove box. Note that preparation and fabrication procedures of the photoactive layer were the same as those described for inverted-structure PSCs. Finally, the top electrode composed of Ag (100 nm) with an area of 4.64 mm² was deposited using a thermal evaporator in vacuum with a pressure of 10⁻⁶ Torr.

Device characterization

Photovoltaic characteristics were measured using a Keithley 1200 instrument under 100 mWcm⁻² with AM 1.5 G. A reference Si solar cell certified by the International System of Units (SI) (SRC-1000-TC-KG5-N, VLSI Standards, Inc) was used to calibrate an accurate measurement.

Sample characterizations

UV-vis/NIR spectra were obtained using a Jasco V-570 UV-vis/NIR spectrophotometer. XPS were measured using an AXIS-NOVA (Kratos) system with a monochromatized Al K α under a pressure of 5 × 10⁻⁸ Torr. AFM images were obtained with a Veeco Dimension 3100 instrument with a silicon cantilever operated in tapping mode. UPS measurements were conducted using an AXIS-NOVA (Kratos) system with He I under a base pressure of 5 × 10⁻⁸ Torr. Sheet resistance of the MoS₂ thin-film was measured with a 4-point probe (FPP-RS8, Dasol Eng.).

Fig. S1 (a) UV-vis spectra of pristine and annealed MoS_2 thin-films coated onto glass substrates. With increasing annealing temperature, structural transformation occurred from the metallic 1T- to the semiconducting 2H-MoS₂ phase, which is consistent with a previous report.² (b) The AFM image and (c) section analysis of MoS₂ sheets casted onto a glass substrate. The z-range and scan size are 20 nm and 5 µm, respectively.

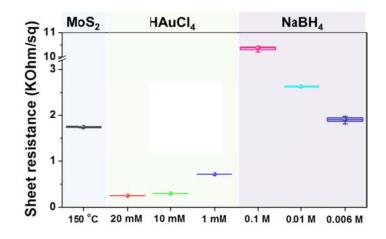


Fig. S2 (a) Sheet resistance values of MoS_2 films before and after doping treatments.

Compared with the 150 °C-annealed un-doped MoS_2 film, the sheet resistance values of the p-doped MoS_2 films were all reduced due to the following reasons: (a) Cl ions chemisorbed onto MoS_2 sheets decrease the sheet resistance due to the fact that Cl ions having the strong electronegativity extract electrons directly from the MoS_2 . (b) Electrons were extracted from MoS_2 sheets due to the reduction of Au^{3+} to Au^0 so that p-type doping was occurred and the hole carriers concentration was increased. From the above two reasons, the sheet resistance of $HAuCl_4$ -treated MoS_2 film was decreased.

By contrast, the sheet resistance of n-doped MoS_2 films was all higher than that of 150 °C-annealed un-doped MoS_2 film. In general, MoS_2 prepared using the Li-intercalation/exfoliation method is reported to be a p-type material. Therefore, the n-doping treatment was considered to have decreased carrier concentration, thus resulting in an increased sheet resistance of the MoS_2 film.³

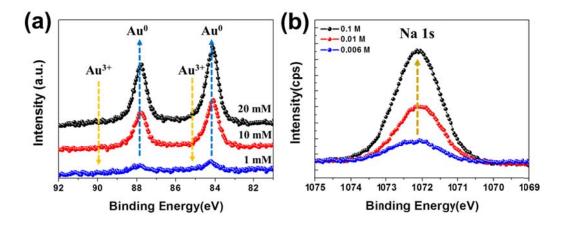
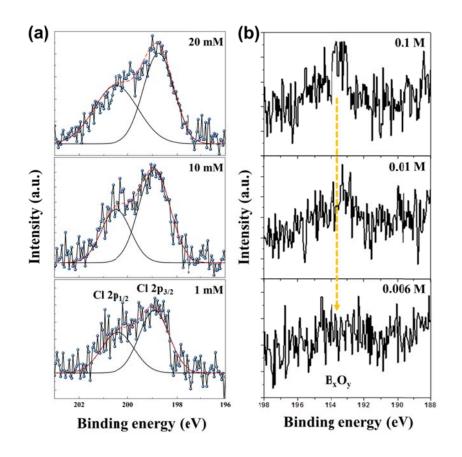
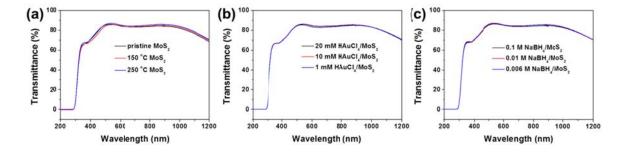




Fig. S3 XPS spectra of (a) Au 4f and (b) Na 1s peaks for MoS_2 thin-films doped with different HAuCl₄ and NaBH₄ concentrations, respectively.

Fig. S4 XPS spectra showing (a) Cl and (b) B_xO_v peak regions for MoS_2 thin-films doped with various HAuCl₄ and NaBH₄ concentrations, respectively.

Fig. S5 Transmittance spectra of (a) un-, (b) p-, and (c) n-doped MoS₂-based interfacial layers coated onto ITO/glass substrates. The transmittance spectra of un-, p-, and n-doped MoS₂ thin-films showed similar transmittance values ranging from 85–87%, indicating that the transmittance values of MoS₂-based interfacial layers had little influence on the J_{sc} values in J-V curves.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is O The Royal Society of Chemistry 2013

	Binding energy (eV)	Work-function (eV)
Pristine MoS ₂	16.84	4.36
150 °C MoS ₂	16.68	4.52
250 °C MoS ₂	16.68	4.52
20 mM HAuCl ₄	16.44	4.76
10 mM HAuCl ₄	16.50	4.70
1 mM HAuCl ₄	16.56	4.64
0.1 M NaBH ₄	17.75	3.45
0.01 M NaBH ₄	17.23	3.97
0.006 M NaBH ₄	16.77	4.43

Table S1 Work-function values of un-, p-, and n-doped MoS2 thin-films

Table S2 Summary of rms roughness values for different MoS2-based interfacial layers

sample	un-doped MoS ₂			p-doped MoS ₂			n-doped MoS ₂		
condition	pristine	150 °C	250 °C	20 mM	10 mM	1 mM	0.1 M	0.01 M	0.006 M
rms roughness (nm) ^(a)	1.18	1.16	1.17	2.27	1.38	1.22	2.63	1.14	1.17

^(a)The rms roughness values were calculated from the AFM data shown in Fig. 3.

Table S3 Summary of peak positions of the XPS Mo $3d_{3/2}$ and Mo $3d_{5/2}$

Sample	Mo 3d _{3/2} (eV)	Mo 3d _{5/2} (eV)
150 °C MoS ₂	232.55	229.45
20 mM HAuCl ₄	232.40	229.15
10 mM HAuCl ₄	232.40	229.25
1 mM HAuCl ₄	232.45	229.30
0.1 M NaBH ₄	233.15	229.90
0.01 M NaBH ₄	232.95	229.65
0.006 M NaBH ₄	232.70	229.50

References

- 1 W. M. R. Divigalpitiya, S. R. Morrison, R. F. Frindt, *Thin Solid Films* 1990, 186, 177.
- 2 G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 2011, 11, 5111.
- 3 K. C. Kwon, K. S. Choi, B. J. Kim, J.-L. Lee, S. Y. Kim, J. Phys. Chem. C 2012, 116, 26586.