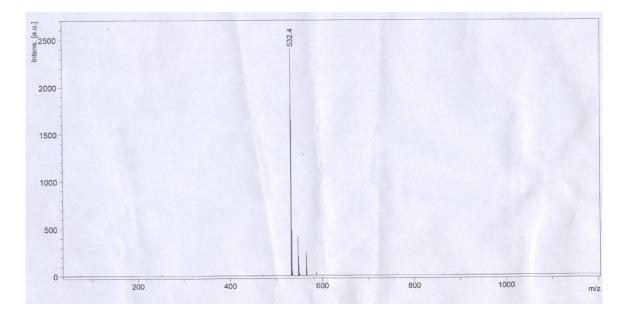
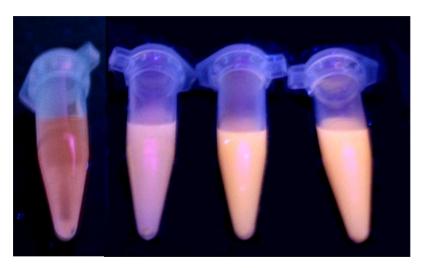
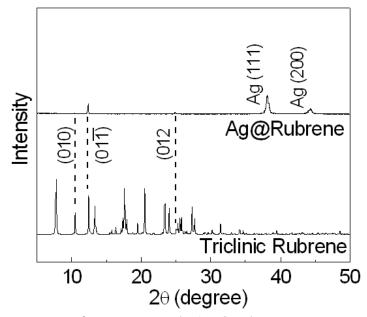
Highly Controlled Bifunctional Ag@Rubrene Core/Shell Nanostructures: Surface-enhanced Fluorescence and Raman Scattering

Cheng Wang,^a Yun Kuang,^a Liang Luo,^{*a} and Xiaoming Sun^a

^{*a*} State Key Laboratory of Chemical Resource Engineering, P.O. Box 98, Beijing University of Chemical Technology, Beijing 100029, P. R. China

* Corresponding authors: luoliang@mail.buct.edu.cn

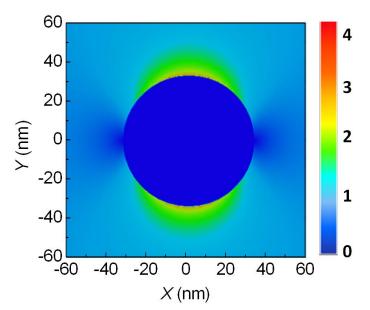

Figure S1. The mass spectrum of shell material re-dissolved from as-prepared nanostructures: the peak at m/z = 532 corresponds to rubrene.

Figure S2. Digital camara images of suspensions under UV light from left to right: pristine rubrene nanoparticles and Ag@rubrene nanoparticles of three typical shell thickness: 4, 8 and 12 nm, respectively.

Figure S3. XRD patterns of as-prepared Ag@rubrene nanostructures and standard triclinic rubrene crystal.

Figure S4. Electric-field amplitude (|E|) patterns for a 65-nm Ag sphere at two polarizations and a 100-nm Ag sphere when irradiated at wavelength of 785 nm with the incident light along the *z* axis and electric field along the *x* axis. The incident field amplitude was assumed to be 1.