Supporting Information

Core-shell nanoarchitecture: a strategy to significantly enhance white-light upconversion of lanthanide-doped nanoparticles

Bo Zhou,^{ab‡} Lili Tao,^{a‡} Yuen H. Tsang,^{*a} and Wei Jin^c

^a Department of Applied Physics and Materials Research Centre, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

^b Institute of Materials Research and Engineering, Agency for Science, Technology

and Research (A*STAR), 3 Research Link, Singapore 117602

^c Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung

Hom, Kowloon, Hong Kong

[‡] These authors contributed equally to this work.

* E-mail address: yuen.tsang@polyu.edu.hk

Figure S1. The UC emission spectrum of core CaF₂:Yb/Tm (20/0.5 mol%) in 300-520 nm wavelength region upon a 980-nm LD excitation. The emission band at ~360 nm originates from the Tm³⁺: ${}^{1}D_{2} \rightarrow {}^{3}H_{6}$ transition. The energy in Tm³⁺ ${}^{1}D_{2}$ also leads to a blue emission at ~450 nm when it decays to the first excited state Tm³⁺ ${}^{3}F_{4}$.

Figure S2. Power dependence of UC emission intensities in CaF₂:Yb/Ho (20/0.5 mol%) and CaF₂:Yb/Tm (20/0.5 mol%) under 980-nm excitation. The slope values are fitted to be 1.63, 1.71 and 2.57 for Ho³⁺: ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$, Ho³⁺: (${}^{5}F_{4}, {}^{5}S_{2}$) $\rightarrow {}^{5}I_{8}$ and Tm³⁺: ${}^{1}G_{4} \rightarrow {}^{3}H_{6}$ transitions, respectively, confirming the red and green emissions of Ho³⁺ are two-step UC processes and blue of Tm³⁺ is a three-step UC process.

Figure S3. Comparison of UC emission spectra from core-shell samples of (a) $CaF_2:Yb/Tm/Ho$ (20/0.5/2.0 mol%)@NaYF4:Yb (20 mol%), (b) $CaF_2:Yb/Tm/Ho$ (20/0.5/2.0 mol%)@CaF2:Yb (20 mol%), (c) $NaYF_4:Yb/Tm/Ho$ (20/0.5/2.0 mol%)@CaF2:Yb (20 mol%) and core only samples of (d) $CaF_2:Yb/Tm/Ho$ (20/0.5/2.0 mol%) and (e) $NaYF_4:Yb/Tm/Ho$ (20/0.5/2.0 mol%) recorded under 980-nm excitation.

Figure S4. UC emission spectra from (a) core CaF_2 :Yb/Tm/Ho (40/0.5/2.0 mol%) and (b) core-shell CaF_2 :Yb/Tm/Ho (40/0.5/2.0 mol%)@NaYF₄:Yb (20 mol%) recorded under 980-nm excitation. The UC emission from (c) CaF_2 :Yb/Tm/Ho (20/0.5/2.0 mol%) is also plotted for comparison.