Supporting Information

Peptides-templated synthesis of wavelength-tunable fluorescent gold nanoparticles

Jiu-Ju Feng,* Hong Huang, Dan-Ling Zhou, Lin-Yi Cai, Qi-Qi Tu and Ai-Jun Wang*

College of Chemistry and Life Science, College of Geography and Environmental Science,

Zhejiang Normal University, Jinhua 321004, China

^{*}Corresponding author: Jiu-Ju Feng E-mail: <u>jjfeng@zjnu.cn</u>, Ai-Jun Wang (Tel./Fax:

86-579-82282273. E-mail: <u>ajwang@zjnu.cn</u>.)

Experimental

Synthesis of P2 and P3 stabilized Au NPs

Preparation of P2 stabilized Au NPs (denoted as P2-Au NPs) was conducted at 50 °C. Typically, 0.0391g P2 was dissolved in 10 mL NaOH (15 mM) and sonicated for 5 min, then 3.125 mL HAuCl₄ solution (4 mM) was added into the solution and stirred for another 5 min. Afterwards, 125 μ L freshly prepared NaBH₄ (10 mM) was introduced and the reaction was allowed to proceed under vigorous stirring for 6 h.

Preparation of P3 stabilized Au NPs (denoted as P3-Au NPs) was conducted at 37 °C. Typically, 5 mL HAuCl₄ aqueous solution (4 mM) was mixed with 5 mL P3 solution (4 mM) in a small vial. Subsequently, 2.5 mL NaOH solution (50 mM) was introduced and stirred for another 5 min, followed by the addition of 125 μ L freshly prepared NaBH₄ (10 mM) and the reaction solution was incubated for 4 h.

Fig. S1 Fluorescence spectra of the reaction solutions with different molar ratios of the peptide to $AuCl_4^{-1}$ upon excitation at 370 nm: (A) P1/Au; (B) P2/Au; (C) P3/Au.

Fig. S2 Temperature-dependent emission spectra of the reaction solution upon excitation at 370 nm: (A) P1-Au NPs; (B) P2-Au NPs; (C) P3-Au NPs.

Fig. S3 UV-vis absorption spectra of the Au NPs synthesized with three different peptides.

Fig. S4 Fluorescence spectra of the P2-Au NPs (A) and P3-Au NPs (B) obtained at different excitation wavelengths.

Fig. S5 Fluorescence (A) and absorption (B) spectra of the P1-Au NPs before (black

line) and after (red line) the addition of NaBH₄.

Fig. S6 Fluorescence lifetime of the as-prepared Au NPs upon excitation at 370 nm: (a) P1-Au NPs; (b) P2-Au NPs; (c) P3-Au NPs. The luminescence decay was fitted to a single-exponential decay.

Fig. S7 TEM images of the (A) P2-Au NPs and (B) P3-Au NPs. Inset shows the corresponding size distribution histogram, obtained from analysis of over 100 individual particles.

Fig. S8 Fluorescence spectra (A) and absorption spectra (B) of the P2-Au NPs in the phosphate solution (25 mM, pH = 7.4) as a function of time. The Au NP solutions were stored at 4 $^{\circ}$ C.

Fig. S9 UV-vis absorption spectra of the P1-Au NPs in the absence (black line) and presence of 20 μ M Hg²⁺ (red line). Inset: TEM images of the P1-Au NPs before (A) and after (B) the addition of 20 μ M Hg²⁺.

Fig. S10 Fluorescence decay of the P1-Au NPs in the absence (black line) and presence of 10 μ M (red line) and 20 μ M Hg²⁺ (blue line).

Fig. S11 (A) XPS spectra showing the binding energies of Au4f of P1-Au NPs in the absence (black line) and presence (red line) of Hg^{2+} , respectively. (B) and (C) are the Au4f_{7/2} spectrum of P1-Au NPs in the absence and presence of Hg^{2+} , respectively. After deconvolution of the Au4f spectrum, two peaks at 84.1 and 85.0 eV are found, which correspond to Au⁰ and Au⁺, respectively. Based on the area ratio between the two peaks, the Au⁺ ratio is measured to be 16% (B) and 13% (C).

Peptide	Sequence	Maximum	Ref.
		Emission /	
		nm	
Insulin	GIVEQCCTSICSLYQLENYCN (A)	670	1
	FVNQHLCGSHLVEALYLVCGERGFFYTPKT		
	(B)		
Glutathione	ECG	610	2
P1	CALNN	611	This
			work
P2	DDCAGGEYDTFPYWDD	668	This
			work
P3	CDDDDD	580	This
			work

Table S1 Fluorescent Au NPs prepared using different peptides as the templates.

	Linear Range (nM)	LOD (nM)	Ref.
P1-Au NPs	50 - 25000	5.0	This work
BSA-Au NPs	1-20	0.5	3
Lysozyme-Au NPs	10-5000	10.0	4
DHLA-Au NPs	1-10000	0.5	5
11-MUA-Au NPs	10-10000	5.0	6
Lys VIAu NPs	1 - 600	0.5	7

Table S2 Comparison of the performances of the Au NPs synthesized with different

References

templates.

- C.-L. Liu, H.-T. Wu, Y.-H. Hsiao, C.-W. Lai, C.-W. Shih, Y.-K. Peng, K.-C. Tang, H.-W. Chang, Y.-C. Chien, J.-K. Hsiao, J.-T. Cheng and P.-T. Chou, Angew. Chem. Int. Ed., 2011, 50, 7056.
- 2. C.-T. Chen, W.-J. Chen, C.-Z. Liu, L.-Y. Chang and Y.-C. Chen, Chem. Commun., 2009, 7515.
- 3. J. Xie, Y. Zheng and J. Y. Ying, Chem. Commun., 2010, 46, 961.
- 4. H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou and Y. Lu, Analyst, 2010, 135, 1406.
- L. Shang, L. Yang, F. Stockmar, R. Popescu, V. Trouillet, M. Bruns, D. Gerthsen and G. U. Nienhaus, *Nanoscale*, 2012, 4, 4155.
- C.-C. Huang, Z. Yang, K.-H. Lee and H.-T. Chang, *Angew. Chem.*, 2007, **119**, 6948.
- 7. Y.-H. Lin and W.-L. Tseng, Anal. Chem., 2010, 82, 9194.