Electronic Supplementary Information

Melilite-Type Blue Chromophore Based on Mn³⁺ in Trigonal-Bypyramidal Coordination Induced by Interstitial Oxygen

Tae-Gon Kim^{*,†}, *Seung-Joo Kim*[‡], *Chun Che Lin*[§], *Ru-Shi Liu*^{**,§}, *Ting-Shan Chan*^{||}, *and Seoung-Jae Im*[†]

[†]Materials Research Center, Samsung Advanced Institute of Technology, Yongin, Korea

[‡]Department of Chemistry, Division of Energy Systems Research, Ajou University, Suwon, Korea

[§] Department of Chemistry, National Taiwan University, Taipei 106, Taiwan

^{II} National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan

Corresponding Authors. E-mail: *taegon2.kim@samsung.com, **rsliu@ntu.edu.tw

Figure S1. X-ray diffraction patterns of $Sr_2(Mg_{1-x}Mn_x)Ge_2O_7$ (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0) powders.

Figure S2. Fitted curves for Mn *L*-edge XANES spectra from (a) $Sr_2(Mg_{0.6}Mn_{0.4})Ge_2O_7$ and (b) $Sr_2MnGe_2O_7$ by the linear combination of *L*-edge spectra from MnO(2+) and $Mn_2O_3(3+)$.

atom	site	x	У	Ζ	осси.	$U_{\rm iso}({ m \AA}^2)$
Sr	4e	0.3304(1)	0.1696(1)	0.5043(3)	1	0.0130(4)
Mn	2 <i>a</i>	0.0000	0.0000	0.0000	1	0.0340(12)
Ge	4 <i>e</i>	0.1409(1)	0.3591(1)	0.9709(3)	1	0.0198(6)
01	2 <i>c</i>	0.5000	0.0000	0.1640(19)	1	0.0446 (55)
02	4 <i>e</i>	0.1425(5)	0.3575(5)	0.2687(12)	1	0.1247(78)
03	8 <i>f</i>	0.0874(6)	0.1810(6)	0.8252(11)	1	0.0807(49)

Table S1. Structural parameters of Sr₂MnGe₂O₇ without an oxygen interstitial ion determined by Rietveld refinement of the synchrotron powder XRD profile.

Space Group: $P\overline{4}2_1m$ (No. 113), Z = 2, a = 8.06534(9) Å, c = 5.39435(6) Å, V = 350.9007(65) Å³,

 $R_{wp} = 10.06, R_p = 7.75, S = 1.15.$

Figure S3. Rietveld refinement of the synchrotron powder XRD profile of Sr₂MnGe₂O_{7.5} including a O4 oxygen interstitial atom. Measured data, fitted results, expected reflection positions, and the difference between measured and fitted results are expressed as black open circles, red solid lines, green vertical lines, and blue solid lines, respectively.

atom	site	x	у	Ζ	осси.	$U_{ m iso}({ m \AA}^2)$
Sr	4e	0.3306(1)	0.1694(1)	0.5036(2)	1	0.0137(3)
Mn	2a	0.0000	0.0000	0.0000	1	0.0333(12)
Ge	4 <i>e</i>	0.1408(1)	0.3591(1)	0.9705(2)	1	0.0202(6)
01	2c	0.5000	0.0000	0.1688(16)	1	0.0402(48)
02	4 <i>e</i>	0.1411(6)	0.3590(6)	0.2717(11)	1	0.0773(49)
03	8 <i>f</i>	0.0861(7)	0.1829(6)	0.8204(11)	1	0.0961(63)
O4	8 <i>f</i>	0.3432(2)	0.4208(1)	0.2117(2)	0.125	0.0561(38)

Table S2. Structural parameters of Sr₂MnGe₂O_{7.5} including O4 oxygen interstitial atom determined by Rietveld refinement of the synchrotron powder XRD profile.

Space Group: $P\overline{4}2_1 m$ (No. 113), Z = 2, a = 8.06534(2) Å, c = 5.39435(2) Å, V = 350.9005(16) Å³,

 $R_{wp} = 9.31, R_p = 7.18, S = 1.07.$

atom	x	у	Z
Sr1	0.334998448	0.179327866	0.491748914
Sr2	0.166334487	0.675876998	0.471685109
Sr3	0.827272384	0.337022583	0.493280939
Sr4	0.670192186	0.845011032	0.492278896
Mn1	0.972105811	0.995240167	0.971683485
Mn2	0.485414278	0.481059082	0.970981668
Gel	0.127393232	0.358709580	0.972556771
Ge2	0.849123023	0.637130710	0.972938296
Ge3	0.651360714	0.160547711	0.028459541
Ge4	0.355814326	0.865312665	0.010924083
01	0.500672516	0.009616753	0.154194326
02	0.926896565	0.436589792	0.890084169
O3	0.141438593	0.372855416	0.293595846
O4	0.863157938	0.651097690	0.294034466
O5	0.370527920	0.880188847	0.689448528
O6	0.780600357	0.061194948	0.783918126
07	0.120469391	0.167831598	0.818257511
O8	0.970214968	0.781418325	0.801908637
09	0.166501104	0.923635360	0.166876327
O10	0.827199651	0.091984681	0.233087234
O11	0.413298672	0.675546973	0.166039807
012	0.582492162	0.336671618	0.232496211
013	0.271849987	0.479179732	0.800768226
O14	0.658331822	0.630248130	0.818519849
015	0.551539464	0.289401741	0.783633035

Table S3. Atomic positions in a Sr₂MnGe₂O_{7.5} unit cell determined by *ab initio* calculation.

a = 8.08990 Å, c = 5.38990 Å, V = 352.750 Å³

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is C The Royal Society of Chemistry 2013

cation	anion	distances (Å)	cation	anion	distances (Å)
Sr1	03	2.4584	Mn1	06	1.9259
	O7	2.4734		08	1.9570
	O15	2.5173		09	1.9788
	01	2.6441		O10	1.9930
	O5	2.6598		07	2.0184
	O12	2.7534			
	O13	2.9865	Mn2	O15	1.9261
	09	3.0336		O13	1.9562
				O11	1.9802
Sr2	O13	2.5312		O12	1.9920
	08	2.5326		O14	2.0221
	011	2.5896			
	09	2.5916	Ge1	O3	1.7379
	O5	2.6150		07	1.7548
	O3	2.6403		O13	1.7813
	O4	2.6405		02	1.7959
Sr3	O2	2.4233	Ge2	O4	1.7380
	O10	2.4283		O14	1.7545
	O12	2.4284		08	1.7810
	O15	2.7519		02	1.7965
	O6	2.7524			
	O4	2.7738	Ge3	O1	1.8537
	O3	2.7753		O6	1.8645
	O7	3.2508		O15	1.8655
	O14	3.2509		O10	1.8836
	O2	3.4451		O12	1.8841
Sr4	O4	2.4576	Ge4	O5	1.7409
	O14	2.4738		O11	1.8089
	O6	2.5154		09	1.8096
	01	2.6410		O1	1.8255
	O5	2.6622			
	O10	2.7490			
	08	2.9901			
	011	3.0480			

Table S4 Selected bond distances	s in a SraMnGeaOz c unit cell	determined by <i>ab initio</i> c	alculation
Table 54. Science bolie distances	$\sin a \operatorname{Sr_2WinO}(207.5 \operatorname{unit}\operatorname{Cen})$	accommed by <i>ub initio</i> ca	alculation

Figure S4. Calculated partial density of states for Sr, Mn, Ge, O in Sr₂MnGe₂O_{7.5}. The Fermi level is set to zero.

Figure S5. Calculated partial density of states for Sr, Mn, Ge, O in Sr₂MnGe₂O₇. The Fermi level is set to zero.

Figure S6. Schematic expression for the stability of the melilite structure determined by the coherency between BO_4 -B'O₄ and AO₈ layers in A₂BB'₂O₇.