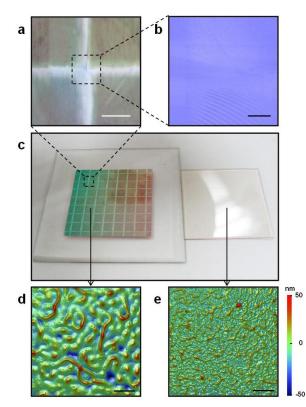
PAPER


Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/materials

Flexible organic light-emitting diodes using laser lift-off method

Kisoo Kim,^{*a,b*} Soo Young Kim^{*a,b*} and Jong-Lam Lee^{**a*}

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

Fig, S1 AFM and SEM images before and after laser-off process. a, Optical microscopy image of surface morphology on GaO_x film after laser 10 lift-off. Scale bar, 1 mm. b, SEM images. No cracks or damage occurred after two KrF excimer laser irradiations. A moiré pattern formed where the irradiated areas overlapped. Scale bar, 100 µm. c, A separated OLED sample (3 × 3 cm) and a carrier glass after laser lift-off. d, AFM phase image of the lower side of the device and e, the separated glass substrate 15 after laser lift-off process. The average surface roughness was small (~0.7 nm) before laser lift-off, but increased to ~8.5 nm after lift-off. The sacrificial GaO_x film was completely melted and separated without cracks by absorbing laser energy. AFM image size was fixed to be 5 µm × 5 µm. Scale bar, 1 µm

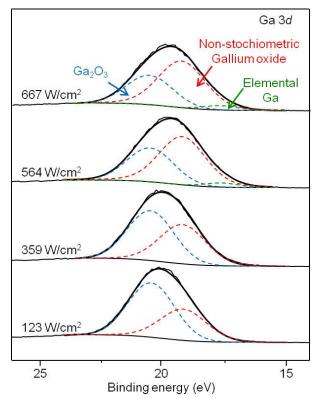


Fig. S2. SRPES spectra of Ga $3d_{5/2}$ of GaO_x. Ga $3d_{5/2}$ SRPES spectra of as-prepared GaO_x film as a function of P_E and of laser irradiated GaO_x film under OLED. The Ga₂O component was rarely formed in special ²⁵ reduction ambient¹. $2Ga_2O_3 \rightarrow Ga_2O + 2Ga + O_2$. As P_E increased from 123 W/cm² to 893 W/cm², the intensity ratio of Ga₂O to Ga₂O₃ increased from 0.28 to 0.67 and the full width at half maximum of GaO_x samples expanded from 2.72 eV to 2.92 eV. A new Ga component was observed at $P_E = 667$ W/cm² and the intensity of this component increased I_D .

30 References

1. R. Carli and C. L. Bianchi, Appl. Surf. Sci., 1994, 74, 99-102.

20