High-Efficiency Near-Infrared-Emitting OLEDs Based on Iridium Complex with Negligible Efficiency Roll-off

Ran Tao, [†] Juan Qiao* [†], Guoliang Zhang, [†] Lian Duan, [†] Chao Chen, [‡] Liduo Wang, [†] Yong Qiu[†]

[†] Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084

^{*}Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084

Corresponding author: * E-mail: qjuan@mail.tsinghua.edu.cn, Tel: +86-10-62773109; Fax: +86-10-62795137

Supporting Information

Figure S1 The uncorrected PL spectra of complex 1 and 2 in CH_2Cl_2 solutions recorded using a red PMT.

Figure S2 Cyclic Voltammetry (CV) diagram for $Ir(mpbqx-g)_2(acac)$ **1** and $Ir(mpbqx-g)_2(Bphen)$ **2** in CH₂Cl₂ and CH₃CN solutions, respectively.

States(E[eV]) (λ[nm]) ^a	Dominant excitations ^b	Character
	$\mathrm{H} \rightarrow \mathrm{L} \; (0.38)$	$\pi(\text{mpbqx})/d_{\pi}(\text{Ir}) \rightarrow \pi^*(\text{mpbqx})$
T ₁ (1.641) (755 nm)	$\text{H-2} \rightarrow \text{L} (0.27)$	$\pi(\text{mpbqx})/d_{\pi}(\text{Ir}) \rightarrow \pi^*(\text{mpbqx})$
	$H-1 \rightarrow L+1 \ (0.19)$	$\pi(acac)/d_{\pi}(Ir) \rightarrow \pi^*(mpbqx)$
T ₂ (1.653) (750 nm)	$H-1 \rightarrow L (0.30)$	$\pi(acac)/d_{\pi}(Ir) \rightarrow \pi^*(mpbqx)$
	$H-2 \rightarrow L+1 \ (0.28)$	$\pi(\text{mpbqx})/d_{\pi}(\text{Ir}) \rightarrow \pi^*(\text{mpbqx})$
	$H \to L+1 \ (0.22)$	$\pi(\text{mpbqx})/d_{\pi}(\text{Ir}) \rightarrow \pi^*(\text{mpbqx})$

Table S1. The first two triplet states for $Ir(mpbqx-g)_2(acac)$ **1** calculated from TDDFT approach.

^a Data in parentheses are excitation energies and corresponding wavelengths. ^b H and L denote HOMO and LUMO, respectively; data in parentheses are the contributions of corresponding excitations.

Figure S3 Current density *vs.* bias voltage characteristics and Radiant emittance *vs.* bias voltage characteristics for devices with the configurations as ITO/NPB (40 nm)/Complex 1: $Ga_2(saph)_2q_2$ (20 wt.% 40 nm)/Bphen (30, 45, 60 nm, respectively)/Mg: Ag (150 nm).

Figure S4 Electroluminescence transients of the OLEDs (ITO/NPB (40 nm)/Complex 1: Ga₂(saph)₂q₂ (20 wt.% 40 nm)/Bphen (45 nm)/Mg: Ag (150 nm)) at 12V (gray lines) and the fit (red lines).

Atoms	x	у	Ζ	$U_{eq.}$
Ir(1)	0.5000	0.43179(2)	0.2500	0.01941(12)
Cl(1)	0.64865(17)	1.0059(4)	0.4835(3)	0.1328(13)
Cl(2)	0.6679(4)	0.8120(8)	0.3675(3)	0.313(6)
O(1)	0.51517(14)	0.2683(3)	0.1692(2)	0.0266(7)
N(1)	0.43073(17)	0.4450(4)	0.1616(2)	0.0222(8)
N(2)	0.34291(19)	0.4666(6)	0.0303(3)	0.0377(10)
C(1)	0.5000	0.0759(7)	0.2500	0.041(2)
C(2)	0.5107(2)	0.1415(5)	0.1810(3)	0.0359(12)
C(3)	0.5191(4)	0.0509(6)	0.1117(4)	0.055(2)
C(4)	0.38206(19)	0.3793(5)	0.1638(3)	0.0267(9)
C(5)	0.3750(2)	0.3039(5)	0.2306(3)	0.0318(10)
C(6)	0.3264(2)	0.2309(6)	0.2298(3)	0.0380(12)
C(7)	0.3193(3)	0.1481(8)	0.2961(4)	0.0530(16)
C(8)	0.2723(3)	0.0759(7)	0.2939(6)	0.062(2)
C(9)	0.2303(3)	0.0819(8)	0.2253(6)	0.065(2)
C(10)	0.2353(2)	0.1586(8)	0.1609(4)	0.0537(17)
C(11)	0.2835(2)	0.2361(6)	0.1612(4)	0.0404(13)
C(12)	0.2904(2)	0.3182(7)	0.0970(4)	0.0426(14)
C(13)	0.3391(2)	0.3879(6)	0.0965(3)	0.0332(11)
C(14)	0.3886(2)	0.5308(6)	0.0299(3)	0.0324(11)
C(15)	0.43527(19)	0.5188(5)	0.0964(3)	0.0250(9)
C(16)	0.3887(3)	0.6174(7)	-0.0434(3)	0.0467(14)
C(17)	0.4882(2)	0.5872(5)	0.1026(3)	0.0238(9)
C(18)	0.5225(2)	0.5706(4)	0.1783(3)	0.0219(10)
C(19)	0.5718(2)	0.6412(5)	0.1928(3)	0.0289(10)
C(20)	0.5885(2)	0.7195(5)	0.1339(3)	0.0349(11)
C(21)	0.5558(2)	0.7249(5)	0.0568(3)	0.0340(11)
C(22)	0.5060(2)	0.6622(5)	0.0414(3)	0.0309(10)
C(23)	0.6932(6)	0.895(2)	0.4525(10)	0.41(3)

Table S2.Atomic coordinates and equivalent isotropic temperature factors* $(Å^2)$

 $*U_{eq.}$ defined as one third of the trace of the orthogonalized U tensor.

Ir(1)-C(18)	1.971(5)	C(5)-C(6)	1.409(7)
$Ir(1)-C(18)^{\#1}$	1.971(5)	C(6)-C(7)	1.420(9)
$Ir(1)-N(1)^{\#1}$	2.065(4)	C(6)-C(11)	1.423(8)
Ir(1)-N(1)	2.066(4)	C(7)-C(8)	1.367(9)
Ir(1)-O(1)	2.182(3)	C(8)-C(9)	1.409(13)
$Ir(1)-O(1)^{\#1}$	2.182(3)	C(9)-C(10)	1.346(11)
Cl(1)-C(23)	1.713(10)	C(10)-C(11)	1.426(8)
Cl(2)-C(23)	1.665(10)	C(11)-C(12)	1.386(9)
O(1)-C(2)	1.262(6)	C(12)-C(13)	1.401(7)
N(1)-C(15)	1.339(6)	C(14)-C(15)	1.463(7)
N(1)-C(4)	1.386(6)	C(14)-C(16)	1.499(8)
N(2)-C(14)	1.308(8)	C(15)-C(17)	1.471(7)
N(2)-C(13)	1.376(8)	C(17)-C(18)	1.408(7)
C(1)-C(2)	1.402(6)	C(17)-C(22)	1.409(7)
$C(1)-C(2)^{\#1}$	1.402(6)	C(18)-C(19)	1.396(7)
C(2)-C(3)	1.515(8)	C(19)-C(20)	1.383(7)
C(4)-C(5)	1.388(7)	C(20)-C(21)	1.400(8)
C(4)-C(13)	1.410(7)	C(21)-C(22)	1.370(8)
$C(18)$ -Ir(1)- $C(18)^{\#1}$	93.1(3)	C(1)-C(2)-C(3)	117.0(5)
C(18)-Ir(1)-N(1) ^{#1}	95.80(19)	N(1)-C(4)-C(5)	121.3(4)
$C(18)^{\#1}$ -Ir(1)-N(1) $^{\#1}$	79.23(19)	N(1)-C(4)-C(13)	119.4(5)
C(18)-Ir(1)-N(1)	79.23(19)	C(5)-C(4)-C(13)	119.3(5)
$C(18)^{\#1}$ -Ir(1)-N(1)	95.80(19)	C(4)-C(5)-C(6)	120.5(5)
$N(1)^{\#1}$ -Ir(1)-N(1)	172.8(2)	C(5)-C(6)-C(7)	121.4(5)
C(18)-Ir(1)-O(1)	90.74(17)	C(5)-C(6)-C(11)	120.4(5)
$C(18)^{\#1}$ -Ir(1)-O(1)	173.20(16)	C(7)-C(6)-C(11)	118.2(5)
$N(1)^{\#1}$ -Ir(1)-O(1)	105.94(14)	C(8)-C(7)-C(6)	120.7(7)
N(1)-Ir(1)-O(1)	79.43(14)	C(7)-C(8)-C(9)	120.2(8)
C(18)-Ir(1)-O(1) ^{#1}	173.20(16)	C(10)-C(9)-C(8)	121.2(6)
$C(18)^{\#1}$ -Ir(1)-O(1)^{\#1}	90.74(17)	C(9)-C(10)-C(11)	120.2(6)
$N(1)^{\#1}$ -Ir(1)-O(1) $^{\#1}$	79.43(14)	C(12)-C(11)-C(6)	118.1(5)
N(1)-Ir(1)-O(1) ^{#1}	105.95(14)	C(12)-C(11)-C(10)	122.5(6)
$O(1)$ -Ir(1)- $O(1)^{\#1}$	85.98(18)	C(6)-C(11)-C(10)	119.4(6)
C(2)-O(1)-Ir(1)	125.9(3)	C(11)-C(12)-C(13)	121.8(5)
C(15)-N(1)-C(4)	119.1(4)	N(2)-C(13)-C(12)	118.3(5)
C(15)-N(1)-Ir(1)	115.8(3)	N(2)-C(13)-C(4)	121.8(5)
C(4)-N(1)-Ir(1)	125.0(3)	C(12)-C(13)-C(4)	119.8(5)
C(14)-N(2)-C(13)	118.1(5)	N(2)-C(14)-C(15)	122.0(5)
$C(2)-C(1)-C(2)^{\#1}$	125.6(7)	N(2)-C(14)-C(16)	114.5(5)
O(1)-C(2)-C(1)	128.1(5)	C(15)-C(14)-C(16)	123.5(5)
O(1)-C(2)-C(3)	114.9(5)	N(1)-C(15)-C(14)	119.5(5)

Table S3.Bond lengths (Å) and bond angles (°)

N(1)-C(15)-C(17)	113.9(4)	C(17)-C(18)-Ir(1)	116.1(4)
C(14)-C(15)-C(17)	126.5(5)	C(20)-C(19)-C(18)	121.9(5)
C(18)-C(17)-C(22)	120.2(5)	C(19)-C(20)-C(21)	119.0(5)
C(18)-C(17)-C(15)	113.4(4)	C(22)-C(21)-C(20)	120.7(5)
C(22)-C(17)-C(15)	126.5(5)	C(21)-C(22)-C(17)	119.9(5)
C(19)-C(18)-C(17)	117.9(4)	Cl(2)-C(23)-Cl(1)	114.1(9)
C(19)-C(18)-Ir(1)	125.5(4)		

(Table S3. continued)

Symmetry transformation code: #1 (1-*x*, *y*, 0.5-*z*).

Atoms	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Ir(1)	0.01792(15)	0.02331(16)	0.01712(16)	0.000	0.00373(10)	0.000
Cl(1)	0.149(3)	0.104(2)	0.171(3)	0.020(2)	0.094(3)	0.010(2)
Cl(2)	0.581(16)	0.231(7)	0.156(4)	-0.101(5)	0.144(7)	-0.228(9)
O(1)	0.0321(18)	0.0264(17)	0.0206(16)	-0.0018(13)	0.0034(14)	0.0037(13)
N(1)	0.0196(19)	0.031(2)	0.0157(19)	-0.0026(13)	0.0021(15)	0.0024(13)
N(2)	0.027(2)	0.057(3)	0.028(2)	-0.005(2)	0.0002(18)	0.012(2)
C(1)	0.058(6)	0.031(4)	0.033(5)	0.000	0.003(4)	0.000
C(2)	0.046(3)	0.033(3)	0.027(2)	-0.006(2)	0.002(2)	0.010(2)
C(3)	0.092(6)	0.034(3)	0.038(4)	-0.008(2)	0.014(4)	0.016(3)
C(4)	0.020(2)	0.032(2)	0.028(2)	-0.0080(19)	0.0044(18)	0.0025(17)
C(5)	0.024(2)	0.042(3)	0.028(2)	-0.006(2)	0.0002(19)	-0.007(2)
C(6)	0.029(3)	0.047(3)	0.038(3)	-0.006(2)	0.007(2)	-0.008(2)
C(7)	0.036(3)	0.073(4)	0.051(4)	0.001(3)	0.009(3)	-0.024(3)
C(8)	0.048(4)	0.073(5)	0.068(5)	0.001(3)	0.019(4)	-0.031(3)
C(9)	0.035(4)	0.088(6)	0.076(6)	-0.015(4)	0.019(4)	-0.036(3)
C(10)	0.026(3)	0.073(4)	0.061(4)	-0.019(4)	0.004(3)	-0.012(3)
C(11)	0.027(3)	0.055(3)	0.039(3)	-0.020(3)	0.005(2)	-0.006(2)
C(12)	0.018(2)	0.067(4)	0.040(3)	-0.012(3)	-0.002(2)	-0.003(2)
C(13)	0.019(2)	0.051(3)	0.029(3)	-0.014(2)	0.0031(19)	0.001(2)
C(14)	0.031(3)	0.042(3)	0.023(2)	-0.004(2)	0.001(2)	0.012(2)
C(15)	0.026(2)	0.028(2)	0.021(2)	-0.0008(18)	0.0026(17)	0.0073(18)
C(16)	0.045(3)	0.065(4)	0.026(3)	0.009(3)	-0.004(2)	0.013(3)
C(17)	0.029(2)	0.026(2)	0.017(2)	0.0008(16)	0.0065(19)	0.0052(17)
C(18)	0.023(2)	0.024(2)	0.021(2)	0.0000(15)	0.0088(19)	0.0029(15)
C(19)	0.029(2)	0.029(2)	0.030(2)	0.0043(19)	0.008(2)	-0.0003(18)
C(20)	0.034(3)	0.034(3)	0.040(3)	0.007(2)	0.014(2)	-0.002(2)
C(21)	0.043(3)	0.029(2)	0.035(3)	0.008(2)	0.020(2)	0.005(2)
C(22)	0.041(3)	0.028(2)	0.025(2)	0.0048(19)	0.011(2)	0.008(2)
C(23)	0.66(7)	0.25(3)	0.47(5)	-0.23(3)	0.46(5)	-0.27(4)

Table S4.Anisotropic thermal parameters* ($Å^2$)

The exponent takes the form: $-2\pi^2 \Sigma \Sigma U_{ij} h_i h_j \mathbf{a}_i^ \mathbf{a}_j^*$

Atoms	x	У	Z	U _{eq.}
H(1)	0.5000	-0.0194	0.2500	0.050
H(3A)	0.5120	0.1026	0.0624	0.082
H(3B)	0.4947	-0.0257	0.1072	0.082
H(3C)	0.5559	0.0184	0.1214	0.082
H(5)	0.4025	0.3014	0.2762	0.038
H(7)	0.3469	0.1430	0.3415	0.064
H(8)	0.2681	0.0225	0.3378	0.074
H(9)	0.1987	0.0321	0.2244	0.079
H(10)	0.2072	0.1610	0.1161	0.064
H(12)	0.2618	0.3273	0.0531	0.051
H(16A)	0.4148	0.5819	-0.0728	0.070
H(16B)	0.3981	0.7099	-0.0271	0.070
H(16C)	0.3532	0.6159	-0.0771	0.070
H(19)	0.5941	0.6354	0.2435	0.035
H(20)	0.6211	0.7679	0.1453	0.042
H(21)	0.5680	0.7715	0.0157	0.041
H(22)	0.4840	0.6691	-0.0095	0.037
H(23A)	0.7252	0.9453	0.4450	0.494
H(23B)	0.7048	0.8278	0.4949	0.494

Table S5. Coordinates and isotropic temperature factors* $(Å^2)$ for H atoms

*The exponent takes the form: $-8\pi^2 U \sin^2 \theta / \lambda^2$

The complete author list of reference 30:

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Montgomery, Jr, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A.
G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe,
M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.