Supplementary Information for "The Effect of Structural and Chemical Bonding Change on Optical Properties of $Si/Si_{1-x}C_x$ Core/Shell Nanowires"

Woo-Jung Lee¹, Jin Won Ma¹, Jung Min Bae¹, Kwang-Sik Jeong¹, Mann-Ho Cho^{1,*}, Chul Lee², Eun Jip Choi², Chul Kang³

¹Department of Physics and Applied Physics, Yonsei University, Seoul 120-749, Korea ²Department of physics, University of Seoul, Seoul 130-743, Korea, Korea ³ Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 500-712

Figure S1. FE-SEM images of the Si/Si_{1-x}C_x core/shell. (a) as-grown Si core NW after the removal of the Au tip at top of the wire, and (b) Si/Si_{1-x}C_x core/shell NWs annealed at 750 $^{\circ}$ C in a vacuum.

Supporting Figure S1. Lee at. al.

Figure S2. (a) HR-TEM image of as-grown Si core NW after the removal of the Au tip at top of the wire, which presents single crystal structure. (b) HR-TEM image of Si/Si_{1-x}C_x core/shell NWs annealed at 600 °C in a vacuum. In this case, Si_{1-x}C_x shell became thick and poly-crystallization.

Supporting Figure S2. Lee at. al.

Figure S3. HR-TEM images of the Si/Si_{1-x}C_x core/shell NWs annealed at 750 $^{\circ}$ C in a vacuum. In this case, Si_{1-x}C_x shell was transformed into single crystal structure.

Supporting Figure S3. Lee at. al.

Figure S4. HR-TEM images of the Si/Si_{1-x}C_x core/shell NWs annealed at 750 $^{\circ}$ C in a vacuum. In this case, Si_{1-x}C_x shell was transformed into single crystal structure with an amount of twin defect.

Supporting Figure S4. Lee at. al.

Figure S5. Raman spectra of the Si/Si_{1-x}C_x core/shell NWs as a function of annealing temperature in wide range from $100 \sim 1100 \text{ cm}^{-1}$.

Supporting Figure S5. Lee at. al.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is © The Royal Society of Chemistry 2013

SiH₄ gases decomposition

 $SiH_4(g) \rightarrow SiH_2 + H_2$

SiH₃CH₃ gases decomposition

 $CH_3SiH_3(g) \rightarrow HSiCH_3 \text{ or } H_2Si=CH_2 + H_2$

Figure S6. A schematic diagram of possible decomposition pathways in the gas phase reactions of SiH_4 with CH_3SiH_3 for $Si_{1-x}C_x$ shell growth on Si core NW.

Supporting Figure S6. Lee at. al.

Figure S7. The reflectance spectra in far-infrared region of the $Si/Si_{1-x}C_x$ core/shell NWs as a function of annealing temperature.

Supporting Figure S7. Lee at. al.

Figure S8. The valence band measured from the $Si/Si_{1-x}C_x$ core/shell NWs as a function of annealing temperature by using XPS.

Supporting Figure S8. Lee at. al.

Figure S9. After the irradiation of light source (790 nm), absorption of the Si and Si_{1-x}C_x NW was attained by the result of 2-D FDTD. The Si_{1-x}C_x NW was classified into two kinds; one is strained Si_{1-x}C_x NW including substitutional C atoms randomly distributed in Si lattices and the other is relaxed Si_{1-x}C_x NW consisting of 3nn configuration of C atoms locally existed in Si lattices.

Supporting Figure S9. Lee at. al.