Supplementary Information

Fig. S1 Observed (crosses) and calculated (solid line) synchrotron XRD profiles and their difference (bottom) for the Rietveld refinement of $Ca_{11}(SiO_4)_4(BO_3)_2$ at room temperature.

The room-temperature powder X-ray diffraction patterns for $Ca_{11}(SiO_4)_4(BO_3)_2$ are shown in Fig. S1. The XRD data could be indexed on the basis of known β -Ca₁₀(SiO₄)₄(CO₃)₂ crystal structure and refined by the Rietveld method ($R_{wp} =$ 12.89 %, $R_p = 9.11$ %). The products crystallize in the orthorhombic system with space group $P2_1/a$ (No. 14).

Fig. S2 XRD patterns of as-prepared Ca₂SiO₄:0.02Ce,0.005Eu, Ca₃B₂O₆:0.01Ce,0.001Eu and

YAG:0.02Ce,0.03Eu.

Fig. S3 PL spectra of Al-reduced CSB:0.005Eu calcined at different temperature.

Fig. S3 shows the PL spectra of Al-reduced CSB:0.005Eu calcined at different temperature. The intense broad peaks of all samples are originated from 5d/4f transition of Eu²⁺ ions due to the strong coupling of the 5d electron with host lattice. In the system of Al-reduced CSB:Eu²⁺, PL intensity increase with increasing temperature. Signals of Eu³⁺ emission were detected in the samples prepared blow 600 °C. As shown in Fig. S3, a few sharp emission peaks are observed at 587, 613, 623, 650, 702 nm. All these are characteristic emission peaks of Eu³⁺ ions, indicating that the reduction temperature from Eu³⁺ ions Eu²⁺ in CSB host may occur at about 600 °C.

Fig. S4 PL spectra of Al-reduced CSB:0.02Ce,0.001Eu and CSB:0.02Ce,0.005Eu calcined at

different temperature.

Quantum efficiencies of selected samples were calculated according to the method described by de Mello *et al* ^{S1} and Palsson *et al* ^{S2}. Briefly, the method allows determining the sample quantum efficiency Φ_f by measuring the ratio between the number of photons emitted (N_{em}) and the number of those absorbed (N_{abs}) by the sample using the relation: $\Phi_f = N_{em}/N_{abs} = (E_c - E_a)/(L_a - L_c)$ where E_c is the integrated luminescence of the sample caused by direct excitation, E_a is the integrated luminescence from an empty integrating sphere (without the sample, only a blank), L_a is the integrated excitation profile from an empty integrating sphere, and L_c is the integrated excitation profile when the sample is directly excited by the incident beam.

		1
reduction temperature (°C)	CIE(x, y)	
	CSB:0.02Ce,0.001Eu	CSB:0.02Ce,0.005Eu
600	(0.195, 0.090)	(0.208, 0.118)
700	(0.213, 0.193)	(0.267, 0.348)
800	(0.215, 0.306)	(0.241, 0.426)
900	(0.201, 0.266)	(0.243, 0.442)
1000	(0.179, 0.216)	(0.223, 0.436)

Table S1 The chromaticity coordinates of phosphors CSB:0.02Ce,0.001Eu and CSB:0.02Ce,0.001Eu at different reduction temperature.

References:

- S1 J. C. De Mello, H. F. Wittmann, and R. H. Friend, Adv. Mater., 1997, 9, 230-232.
- S2 L. O. Palsson and A. P. Monkman, Adv. Mater., 2002, 14, 757-758.