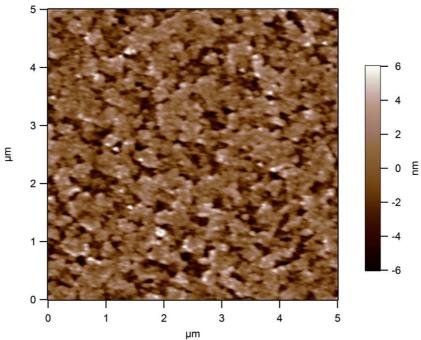
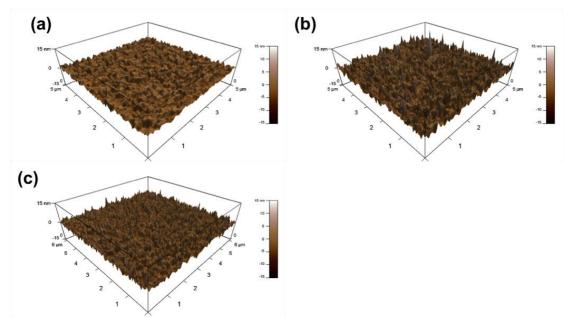
Supporting Information

Enhanced charge extraction of Polymer Solar Cell by Solution-Processable Gold Nanoparticles


Si Yun Khoo^{a,b}, Hongbin Yang^a, Ziming He^a, Jianwei Miao^a, Kam Chew Leong^b, Chang Ming Li^{c*}, Timothy Thatt Yang Tan^{a*}

• To whom correspondence should be addressed. Email: tytan@ntu.edu.sg, Tel: (+65) 6316 8829, Fax: (+65) 6794 7553 (TTYT). Email: ecmli@swu.edu.cn (CML)


^a School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637459.

^b GlobalFoundries Singapore Pte. Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406, Singapore.

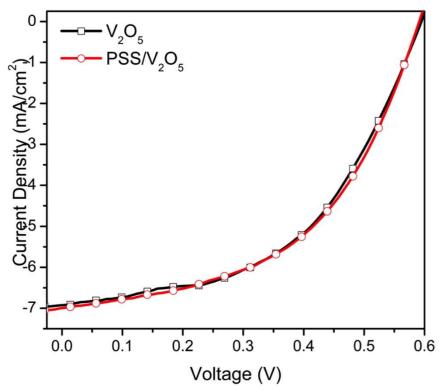

^c Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715, China.

Figure S 1: AFM height topography of blank ITO substrate.

Figure S 2: 3D AFM topography images of (a) V_2O_5 , (b) Au-NP/ V_2O_5 , (c) Au-NP:PSS/ V_2O_5 on ITO substrate.

Figure S 3: The effect of insertion of PSS between V_2O_5 and ITO substrate on the current-voltage characteristics of polymer solar cells.

Table S 1: Summary of performance parameters of P3HT:PC₆₁BM solar cells fabricated by varying the component in buffer layer.

Buffer Layer	$V_{oc}(V)$	J_{sc} (mA/cm ²)	PCE (%)	FF (%)
V_2O_5	0.596	7.02	2.11	50.5
PSS/V ₂ O ₅	0.592	7.00	2.13	51.4