Supporting Information

Table S1. Comparison of H_2S sensing properties of the CuO-functionalized SnO_2 nanowires with those of previous reports.

Materials type	H ₂ S (ppm)	Respons e (<i>R_a</i> / <i>R_g</i>)	Respons e time (s)	Recovery time (s)	Operating Temp. (°C)	Ref.
CuO-functionalized SnO ₂ nanowires	0.1-1	10-15	9	8	300	this work
CuO-loaded SnO ₂ film	50	2.5×10 ⁴	80	100	200	14
SnO ₂ -CuO-SnO ₂ multilayer thick film	50	210	45	41	90	18
Cu-doped SnO ₂ thin film	1000	910	10	1500	200	19
CuO-modified SnO2nanoribbons	3	180	15		27	20
CuO-doped SnO ₂ thin film	50	3.6×10 ⁵	600	180	150	26
SnO ₂ -ZnO-CuO composite thick film	50	6×10 ⁴	15	420-480	250	27
CuO-SnO ₂ core/shell nanorods	10	9.4×10 ⁴			60	28
Cu-doped SnO ₂ nanowires	50	6×10 ⁶			150	29
CuO-doped SnO ₂ nanowires	20	809	1	332	300	30
CuO-loaded SnO ₂ nanofibers	10	1.98×10 ⁴	1	10	300	31

Fig. S1. Microstructures of Cu nanoparticles synthesized with different CuSO₄.5H₂O precursor concentrations in γ -ray radiolysis at 10Gy.h⁻¹ for 2h: (a) 0.24, (b) 0.48, (c) 0.96, and (d) 1.9 mM CuSO₄.5H₂O in a mixed solvent of deionized water (77 vol%) and 2- propanol (23 vol%). (e) The size and formation density of Cu nanoparticles summarized from the microstructures in (a)–(d).

Fig. S2. Microstructures of Cu nanoparticles synthesized at various dose rates for 2 h at 0.96 mM CuSO₄.5H₂O : (a) 2, (b) 5, (c) 10, and (d) 15 kGy.h⁻¹ dose rate.(e) The size and formation density of Cu nanoparticles summarized from the microstructures in (c)–(d).

Fig. S3. Microstructures of Cu nanoparticles synthesized for various exposure times at 10 kGy·h⁻¹ γ -ray and 0.96 mM CuSO₄·5H₂O: (a) 1, (b) 2, (c) 3, and (d) 4 h. (e) The size and formation density of Cu nanoparticles summarized from the microstructures in (a)–(d).