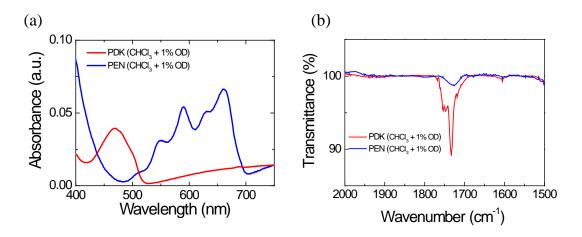
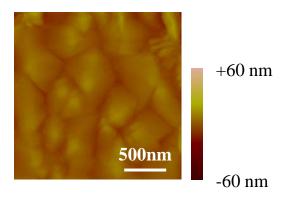
Supporting Information


Characterization and Field-Effect Transistor Performance of Printed Pentacene Films Prepared by Photoconversion of the Soluble Precursor

Ken-ichi Nakayama,^{*a,c} Chika Ohashi,^a Yoshisato Oikawa,^a Takao Motoyama^{a,c} and ⁵ Hiroko Yamada^{*b,c}

^a Department of Organic Device Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, (Japan), Fax: (+81)238-26-3713, E-mail: nakayama@yz.yamagata-u.ac.jp


¹⁰ ^b Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, 630-0192, (Japan), Fax: (+81)743-724-6042, E-mail: hyamada@ms.naist.jp

^c Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Goban-cho, Chiyoda-ku 102-0076, Japan

15

Figure S1. (a) UV/vis spectra and (b) FT-IR/ATR spectra, for the PDK films spin-coated from chloroform solution with 1% 1,8-octanedithiol before and after photoirradiation.

²⁰ **Figure S2.** AFM image of a vacuum-deposited pentacene film on a HMDS-treated Si/SiO₂ substrate. The surface roughness RMS value was 6.7 nm.

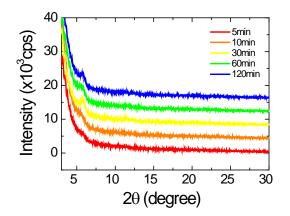


Figure S3. XRD patterns of photoconverted pentacene films with various photoirradiation times. PDK films were prepared from chloroform with 1% TCB on GR650-treated Si/SiO₂ substrates.