Liquid-Crystalline Elastomer Micropillar Array for Haptic Actuation ## Núria Torras,^{a,b} Kirill E. Zinoviev,^{‡a} Jaume Esteve*^a and Antoni Sánchez-Ferrer*^c ^a Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, E-08193 Barcelona, Spain. E-mail: <u>jaume.esteve@imb-cnm.csic.es</u> ^b Departament de Microelectrònica i Sistemes Electrònics, Universitat Autònoma de Barcelona, Campus UAB, Bellaterra E-08193 Barcelona, Spain. ^c ETH Zurich, Department of Health Sciences & Technology, Institute of Food, Nutrition & Health, Food & Soft Materials Science Group, Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland. E-mail: antoni.sanchez@hest.ethz.ch [‡] Present address: Medlumics SL, Ronda de Poniente 16 1E, 28760 Tres Cantos, Madrid, Spain. Fig. ESI-1. Setup for the thermoelastic experiment. Fig. ESI-2. Setup for the evaluation of the mechanical actuation. Swelling experiments on the partially crosslinked non-oriented micropillar (P_{cno}), on the fully crosslinked non-oriented micropillar (P_{cno}), and on the fully crosslinked oriented micropillar (P_{co}) were performed in toluene at 25 °C in order to obtain information about the crosslinking process and the orientation of the sample. The swelling parameter $q = \alpha_r^2 \alpha_z$ for the P_{co} micropillar ($q = 4.2 \pm 0.3$) was similar to the P_{cno} micropillar ($q = 4.1 \pm 0.3$), but lower than for the P_{pcno} micropillar ($q = 5.4 \pm 0.5$). These values confirmed the difference in crosslinking density between the partially crosslinked elastomer, P_{pcno} with high swelling ratio, and the fully crosslinked elastomers, P_{co} and P_{cno} with low swelling ratio. Moreover, the anisotropy of the network could be described from the swelling anisotropy $q_z = \alpha_z/\alpha_r$, which is the ratio between the axial swelling ratio α_z and the radial swelling ratio α_r . The oriented micropillar P_{co} showed a swelling anisotropy of $q_z = 1.09 \pm 0.04$, which differed from the random distribution of nematic domains in the micropillars P_{pcno} and P_{cno} with swelling anisotropy values of $q_z = 1.00 \pm 0.06$ and $q_z = 1.00 \pm 0.05$, respectively (Fig. ESI-3). **Fig. ESI-3.** Swelling ratios α_r and α_z , swelling anisotropy q_z and swelling parameter q for the partially crosslinked non-oriented micropillar (P_{cno}), the fully crosslinked non-oriented micropillar (P_{cno}), and the fully crosslinked oriented micropillar (P_{co}) in toluene at 25 °C.