Electronic Supplementary Information

Arenedithiocarboxyimide-containing extended π -conjugated systems with high electron affinity

Yutaka Ie,* Seihou Jinnai, Masashi Nitani, and Yoshio Aso*

The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan, JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 333-0012, Japan.

Table of Contents

Scheme and Figures	S2–S5
Experimental Procedures	S6
Synthesis	S7–S11
NMR Spectra	S12–S13
OFET Device Fabrication	S14
Photovoltaic Device Fabrication	S14
Surface Free Energy Estimation	S15
Computational Details	S16–S19
References	S20

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Scheme and Figures

Scheme S1. Synthesis of 1, 2, 4, and 5.

Fig. S1 TGA curves of compounds with a heating rate of 10 $^{\circ}$ C min⁻¹ in N₂.

Fig. S2 Differential pulse voltammograms of (a) **S-Imi-a-BT** (red) and **Imi-a-BT** (blue) and (b) **S-Imi-TzTz** (red) and **Imi-TzTz** (blue) in CHCl₃ containing 0.1 M TBAPF₆.

Fig. S3 HOMO, LUMO, and LUMO+1 energies calculated with DFT at the B3LYP/6-31G(d,p) level and LUMO orbitals. 2-Ethylhexyl groups were replaced with methyl groups to ease the calculation.

Fig. S4 Photoemission spectra of (a) **S-Imi-a-BT** (red) and **Imi-a-BT** (blue), (b) **S-Imi-TzTz** (red) and **Imi-TzTz** (blue), and (c) **S-TImi-TzTz** (red) and **TImi-TzTz** (blue) thin films.

Fig. S5 Transfer characteristics of OFETs based on (a) S-Imi-a-BT, (b) S-TImi-TzTz, (c) Imi-a-BT, and (d) Imi-TzTz.

Fig. S6 AFM images of (a) S-Imi-a-BT, (b) Imi-a-BT, (c) S-Imi-TzTz, (d) Imi-TzTz, (e) S-TImi-TzTz, and (f) TImi-TzTz.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2013

Fig. S7 In-plane XRDs of (a) S-Imi-a-BT and (b) S-Imi-TzTz.

Fig. S8 EQE spectra of OPV devices.

Table S1. OPV characteristics of compounds.

Compounds	$V_{\rm oc}/{ m V}$	$J_{\rm sc}/{ m mA~cm^{-2}}$	FF	PCE/%
S-Imi-a-BT	0.41	0.64	0.26	0.07
S-Imi-TzTz	0.23	0.10	0.35	0.01
Imi-a-BT	0.89	3.99	0.45	1.58

Experimental Procedures

General Information. Column chromatography was performed on silica gel, KANTO Chemical silica gel 60N (40-50 µm). Thin-layer Chromatography (TLC) plates were visualized with UV light. Preparative gel-permeation chromatography (GPC) was performed on a Japan Analytical Industry LC-918 equipped with JAI-GEL 1H/2H. Melting points are uncorrected. ¹H and ¹³C NMR spectra were recorded on a JEOL ECS-400 spectrometer in CDCl₃ or $CDCl_3/CS_2$ with tetramethylsilane (TMS) as an internal standard. Data are reported as follows: chemical shift in ppm (δ). multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant (Hz), and integration. Mass spectra were obtained on a Shimadzu GCMS-QP-5050 or Shimadzu AXIMA-TOF. DSC and TGA were performed under nitrogen at a heating rate of 10 °C min⁻¹ with a Shimadzu DSC-60 and a Shimadzu TGA-50, respectively. UV-vis-NIR spectra were recorded on a Shimadzu UV-3600 spectrophotometer. Fluorescence spectra were recorded using a Fluoromax-2 spectrometer in the photo-counting mode equipped with a Hamamatsu R928 photomultiplier. The bandpass for the emission spectra was 1.0 nm. All spectra were obtained in spectrograde solvents. Cyclic voltammetry was carried out on a BAS CV-620C voltammetric analyzer using a platinum disk as the working electrode, platinum wire as the counter electrode, and Ag/AgNO₃ as the reference electrode at a scan rate of 100 mV s⁻¹. Photoemission yield spectroscopy was carried out using a Riken Keiki Co. Ltd. AC-3 with a light intensity of 10 mW. Elemental analyses were performed on Perkin Elmer LS-50B by the Elemental Analysis Section of CAC, ISIR, Osaka University. The surface structures of the deposited organic film were observed by atomic force microscopy (Shimadzu, SPM9600), and the film crystallinity was evaluated by an X-ray diffractometer (Rigaku, SmartLab). X-ray diffraction patterns were obtained using Bragg-Brentano geometry with CuKa radiation as an X-ray source with an acceleration voltage of 45 kV and a beam current of 200 mA. The scanning mode was set to 2θ scans between 3°-30° with scanning steps of 0.01°.

Materials. All reactions were carried out under a nitrogen atmosphere. Solvents of the highest purity grade were used as received. Unless stated otherwise, all reagents were purchased from commercial sources and used without purification. 4,7-diethynyl-2,1,3-benzothiadiazole (3) and 5-methyl-2,3-thiophenedicarboxylic acid (8) were prepared by reported procedure, and ¹H NMR data of this compound was in agreement with those previously reported.^{1,2}

Synthesis

Synthesis of **1**: 4-Bromophthalic anhydride (2.0 g, 8.8 mmol) and 2-ethyl-1-hexylamine (1.2 g, 8.8 mmol) were placed in a round-bottomed flask and dissolved with DMF (50 mL), and the resulting mixture was stirred at 140 °C for 12 h. After being cooled to room temperature, the reaction was quenched by the addition of H₂O. The aqueous layer was extracted with ethyl acetate (EtOAc), and the combined organic layer was washed with water and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc = 10/1) to give **1** (2.3 g, 75%). Colorless solid; m.p.: 72-73 °C; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.96 (d, *J* = 1.6 Hz, 1H), 7.83 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 3.56 (d, *J* = 7.3 Hz, 2H), 1.81 (m, 1H), 1.35-1.25 (m, 8H), 0.91-0.85 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 167.91, 167.36, 136.85, 133.75, 130.62, 128.77, 126.58, 124.56, 42.12, 38.24, 30.46, 28.46, 23.80, 22.99, 14.07, 10.39; MS (GC) *m/z* 337 (M⁺, Calcd 337). Anal. Calcd for C₁₆H₂₀BrNO₂: C, 56.82; H, 5.96; N, 4.14. Found: C, 56.88; H, 6.01; N, 4.06.

Synthesis of **2**: **1** (100 mg, 0.30 mmol) and Lawesson's reagent (238 mg, 0.59 mmol) were placed in a test tube with screw cap and dissolved with toluene (5 mL), and the resulting mixture was stirred at 120 °C for 12 h. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc = 10/1) to give **2** (45 mg, 41%). Dark brown oil; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.97 (d, *J* = 1.1 Hz, 1H), 7.79 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.70 (d, *J* = 7.8 Hz, 1H), 4.36 (dd, *J* = 7.3, 2.1 Hz, 2H), 2.18 (m, 1H), 1.36-1.21 (m, 8H), 0.90-0.85 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 197.07, 196.52, 135.75, 135.74, 133.23, 127.80, 126.25, 124.63, 48.06, 38.18, 30.55, 28.50, 23.94, 22.99, 14.05, 10.79; MS (GC) *m/z* 369 (M⁺, Calcd 369). Anal. Calcd for C₁₆H₂₀BrNS₂: C, 51.89; H, 5.44; N, 3.78. Found: C, 51.62; H, 5.44; N, 3.80.

Synthesis of **6**: 4-Methylphthalic anhydride (3.0 g, 18.5 mmol) and 2-ethyl-1-hexylamine (2.4 g, 18.5 mmol) were placed in a round-bottomed flask and dissolved with DMF (75 mL), and the resulting mixture was stirred at 140 °C for 12 h. After being cooled to room temperature, the reaction was quenched by the addition of H₂O. The aqueous layer was extracted with EtOAc, and the combined organic layer was washed with water and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc =10/1) to give **6** (3.0 g, 60%). Colorless solid; m.p.: 47-49 °C; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.71 (d, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 1.1 Hz, 1H), 7.48 (dd, *J* = 7.6, 1.1 Hz, 1H), 3.55 (d, *J* = 7.3 Hz, 2H), 2.50 (s, 3H), 1.83-1.80 (m, 1H), 1.37-1.26 (m, 8H), 0.92-0.85 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 168.92, 168.82, 145.03, 134.32, 132.45, 129.47, 123.69, 123.03, 41.79, 38.23, 30.45, 28.47, 23.78, 22.96, 21.96, 14.03, 10.38; MS (GC) *m/z* 273 (M⁺, Calcd 273). Anal. Calcd for C₁₇H₂₃NO₂: C, 74.69; H, 8.48; N, 5.12. Found: C, 74.66; H, 8.35; N, 5.12.

Synthesis of 7: To a stirred solution of 6 (1.00 g, 3.65 mmol) in CCl₄ (15 mL) was added NBS (0.97 g, 5.47 mmol), benzoyl peroxide (BPO) (88 mg, 0.37 mmol), and the resulting mixture was stirred at 90 °C for 12 h. After being cooled to room temperature, the reaction was quenched by the addition of NaHCO₃ aq., and the organic layer was separated. The aqueous layer was extracted with CHCl₃, and the combined organic layer was washed with water and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc = 10/1) to give bromo compound A (1.00 g). ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.84 (br,

1H), 7.79 (d, J = 7.3 Hz, 1H), 7.70 (dd, J = 7.3, 1.6 Hz, 1H), 5.56 (d, J = 6.9 Hz, 2H), 4.54 (s, 2H), 2.03 (m, 1H), 1.42-1.23 (m, 8H), 0.95-0.86 (m, 6H). This compound was used for next step without further purification.

A mixture of A (1.00 g), silver trifluoroacetate (748 mg, 3.39 mmol) in 1,4-dioxane (8 mL) and water (2mL) was stirred at room temperature. After stirring for 12 h, the reaction mixture was filtered over celite with CHCl₃ as an eluent, and the organic layer was separated. The aqueous layer was extracted with CHCl₃, and the combined organic layer was washed with water and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc = 3/1) to give alcohol **6** (350 mg, 33% (2 steps)). Colorless solid; m.p.: 80-81 °C; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.85 (d, *J* = 1.6 Hz, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.71 (dd, *J* = 7.8, 1.6 Hz, 1H), 4.87 (s, 2H), 3.57 (d, *J* = 7.4 Hz, 2H), 1.93 (br, 1H), 1.83 (m, 1H), 1.36-1.25 (m, 8H), 0.93-0.86 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 168.69, 168.62, 147.76, 132.57, 131.76, 131.19, 123.33, 121.21, 64.38, 41.94, 38.27, 30.49, 28.49, 23.81, 23.00, 14.07, 10.41; MS (GC) *m/z* 351 (M⁺, Calcd 351). Anal. Calcd for C₁₇H₂₃NO₃: C, 70.56; H, 8.01; N, 4.84. Found: C, 70.73; H, 7.32; N, 4.81.

Synthesis of 4: To a stirred solution of **6** (300 mg, 1.03 mmol) in CH₂Cl₂ (10 mL) was added MnO₂ (895 mg, 10.3 mmol), and the resulting mixture was stirred at room temperature. After stirring for 12 h, the reaction mixture was filtered over celite with CHCl₃ as an eluent. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc = 3/1) to give aldehyde **4** (245 mg, 83%). Colorless solid; m.p.: 47-50 °C; ¹H NMR (400 MHz, CDCl₃, TMS): δ 10.17 (s, 1H), 8.34 (s, 1H), 8.25 (dd, *J* = 7.8, 1.4 Hz, 1H), 8.02 (d, *J* = 1.4 Hz, 1H), 3.62 (d, *J* = 7.5 Hz, 2H), 1.85 (m, 1H), 1.36-1.26 (m, 8H), 0.94-0.87 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 190.23, 167.52, 167.40, 140.56, 136.38, 135.24, 132.89, 124.02, 123.88, 42.29, 38.24, 30.46, 28.43, 23.80, 22.97, 14.04, 10.36; MS (GC) *m/z* 287 (M⁺, Calcd 287). Anal. Calcd for C₁₇H₂₁BNO₃: C, 71.06; H, 7.37, N, 4.87. Found: C, 70.73; H, 7.32; N, 4.81.

Synthesis of Imi-a-BT: 1 (189 mg, 0.67 mmol), 3 (89 mg, 0.30 mmol), CuI (5 mg, 0.03 mmol), and Pd(PPh₃)₄ (39 mg, 0.03 mmol) were placed in a test tube with screw cap and dissolved with THF (6 mL) and diisopropylethylamine (0.6 mL). After being cooled to room temperature, the reaction mixture was filtered over celite with CHCl₃ as an eluent. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (CHCl₃), followed by purification with preparative GPC (CHCl₃) to give Imi-a-BT (189 mg, 89%). Yellow solid; m.p.: 225-226 °C; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.10 (d, J = 0.9 Hz, 2H), 7.98 (dd, J = 7.8, 0.9 Hz, 2H), 7.86 (d, J = 7.8 Hz, 2H), 7.86 (s, 2H), 3.59 (d, J = 7.3 Hz, 4H), 1.84 (m, 2H), 1.37-1.27 (m, 16H), 0.93-0.86 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 167.98, 167.86, 154.18, 137.17, 132.91, 132.43, 131.60, 128.37, 126.42, 123.29, 117.04, 95.83, 88.93, 42.13, 38.27, 30.48, 28.47, 23.83, 23.00, 14.06, 10.40; MS MALDI-TOF(1,8,9-trihydroxyanthracene matrix) *m/z* 698.14 (M⁺, Calcd 698.29); Anal. Calcd for C₄₂H₄₂N₄O₄S: C, 72.18; H, 6.06; N, 8.02. Found: C, 71.92; H, 6.14; N, 7.90.

Synthesis of S-Imi-a-BT: Imi-a-BT (230 mg, 0.24 mmol) and Davy's reagent (375 mg, 1.32 mmol) were placed in a test tube with screw cap and dissolved with toluene (36 mL), and the resulting mixture was stirred at 120 °C for 12 h. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (CHCl₃), followed by precipitation using CHCl₃ and acetone to give **S-Imi-a-BT** (220 mg, 88%). Red Solid; m.p.: > 300

°C; ¹H NMR (400 MHz, CDCl₃/CS₂, TMS): δ 8.07 (d, J = 1.5 Hz, 2H), 7.90 (dd, J = 7.8, 1.5 Hz, 2H), 7.84 (d, J = 7.8 Hz, 2H), 7.82 (s, 2H), 4.37 (d, J = 7.0 Hz, 4H), 2.18 (m, 2H), 1.39-1.25 (m, 16H), 0.92-0.86 (m, 12H); ¹³C NMR (100 MHz, CDCl₃/CS₂): δ 196.44, 196.39, 154.02, 135.75, 134.63, 133.88, 132.55, 127.17, 126.55, 123.24, 117.08, 96.76, 89.28, 47.81, 38.18, 30.62, 28.62, 24.09, 23.20, 14.16, 10.86; MS MALDI-TOF(1,8,9-trihydroxyanthracene matrix) m/z 762.09 (M⁺, Calcd 762.20); Anal. Calcd for C₄₂H₄₂N₄S₅: C, 66.10; H, 5.55; N, 7.34. Found: C, 65.84; H, 5.79; N, 7.42.

Synthesis of Imi-TzTz: 4 (220 mg, 1.03 mmol), etahnedithioamide (368 mg, 3.06 mmol) were placed in a test tube with screw cap and dissolved with DMF (10 mL), and the resulting mixture was stirred at 140 °C for 12 h. After being cooled to room temperature, the reaction mixture was quenched by addition of water, and the organic layer was separated with CHCl₃. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (CHCl₃), followed by precipitation using CHCl₃ and acetone to give Imi-TzTz (174 mg, 69%). Yellow solid; m.p.: 218-220 °C; ¹H NMR (400 MHz, CDCl₃, TMS): δ 8.44 (d, *J* = 1.6 Hz, 2H), 8.38 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.95 (d, *J* = 7.8 Hz, 2H), 3.62 (d, *J* = 7.1 Hz, 4H), 1.85 (m, 2H), 1.38-1.28 (m, 16H), 0.93-0.86 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 167.84, 167.75, 167.70, 152.36, 138.95, 133.25, 133.23, 131.57, 124.04, 121.01, 42.21, 38.25, 30.47, 28.46, 23.81, 22.99, 14.06, 10.39; MS MALDI-TOF(1,8,9-trihydroxyanthracene matrix) *m/z* 656.00 (M⁺, Calcd 656.25); Anal. Calcd for C₃₆H₄₀N₄O₄S₂: C, 65.83; H, 6.14; N, 8.53. Found: C, 65.82; H, 6.14; N, 8.56.

Synthesis of S-Imi-TzTz: Imi-TzTz (100 mg, 0.15 mmol) and Davy's reagent (173 mg, 0.61 mmol) were placed in a test tube with screw cap and dissolved with toluene (10 mL), and the resulting mixture was stirred at 120 °C for 12 h. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (CHCl₃), followed by precipitation using CHCl₃ and acetone to give *S-Imi-TzTz* (97 mg, 88%). Red solid; m.p.: 261-262 °C; ¹H NMR (400 MHz, CDCl₃/CS₂, TMS): δ 8.38 (d, *J* = 1.4 Hz, 2H), 8.31 (dd, *J* = 7.8, 1.4 Hz, 2H), 7.89 (d, *J* = 7.8 Hz, 2H), 4.36 (dd, *J* = 7.3, 2.3 Hz, 4H), 2.17 (m, 2H), 1.38-1.24 (m, 16H), 0.92-0.86 (m, 12H); ¹³C NMR (100 MHz, CDCl₃/CS₂): δ 196.01, 195.98, 167.57, 152.28, 137.61, 135.23, 135.18, 130.10, 123.85, 121.04, 47.81, 38.16, 30.63, 28.63, 24.13, 23.24, 14.20, 10.87; MS MALDI-TOF(1,8,9-trihydroxyanthracene matrix) *m/z* 719.85 (M⁺, Calcd 720.16); Anal. Calcd for C₃₆H₄₀N₄S₆: C, 59.96; H, 5.59; N, 7.77. Found: C, 60.06; H, 5.64; N, 7.78.

Synthesis of 9: 8 (6.52 g, 35.0 mmol) were placed in a round-bottomed flask and dissolved with acetic anhydride (140 mL), and the resulting mixture was stirred at 140 °C for 12 h. After being cooled to room temperature, hexane was added and the resulting precipitate was collected by filtration, and dried to give 9 (5.02 g, 85%). Pale yellow solid; m.p.: 221-222 °C; ¹H NMR (400 MHz, DMSO-d₆): δ 7.39 (d, J = 0.9 Hz, 1H), 2.66 (d, J = 0.9 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d₆): δ 165.29, 162.69, 144.71, 137.49, 134.35, 128.82, 15.02; MS (GC) *m/z* 168 (M⁺, Calcd 168). This compound was used for next step without further purification.

Synthesis of **10**: **9** (2.0 g, 11.9 mmol) and 2-ethyl-1-hexylamine (1.61 g, 12.5 mmol) were placed in a round-bottomed flask and dissolved with toluene (180 mL), and the resulting mixture was stirred at 140 °C for 12 h. After being cooled to room temperature, the solvent was removed under reduced pressure and SOCl₂ (40 mL) was added. The resulting

mixture was refluxed for 2 h. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc = 19/1) to give **10** (2.14 g, 64%). White solid; m.p.: 34-35 °C; ¹H NMR (400 MHz, CDCl₃, TMS): δ 6.97 (s, 1H), 3.46 (d, *J* = 7.3 Hz, 2H), 2.61 (s, 3H), 1.80-1.76 (m, 1H), 1.36-1.26 (m, 8H), 0.92-0.86 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 164.69, 163.37, 153.85, 144.73, 137.93, 119.18, 42.15, 38.38, 30.39, 28.46, 23.71, 23.01, 16.31, 14.06, 10.40; MS (GC) *m/z* 279 (M⁺, Calcd 279); Anal. Calcd for C₁₅H₂₁NO₂S₂: C, 64.48; H, 7.58; N, 5.01. Found: C, 64.30; H, 7.29; N, 5.04.

Synthesis of 11: To a stirred solution of 10 (2.14 g, 7.66 mmol) in CCl₄ (31 mL) was added NBS (2.04 g, 11.5 mmol), BPO (186 mg, 0.77 mmol), and the resulting mixture was stirred at 90 °C for 12 h. After being cooled to room temperature, the reaction was quenched by the addition of NaHCO₃ aq., and the organic layer was separated. The aqueous layer was extracted with CHCl₃, and the combined organic layer was washed with water and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc = 10/1) to give bromo compound **B** (1.82 g). ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.29 (s, 1H), 4.71 (s, 2H), 3.49 (d, *J* = 7.3 Hz, 2H), 1.80-1.73 (m, 1H), 1.36-1.27 (m, 8H), 0.92-0.87 (m, 6H). This compound was used for next step without further purification.

A mixture of **B** (2.67 g), silver trifluoroacetate (1.98 g, 6.11 mmol) in 1,4-dioxane (15 mL) and water (3 mL) was stirred at room temperature. After stirring for 12 h, the reaction mixture was filtered over celite with CHCl₃ as an eluent, and the organic layer was separated. The aqueous layer was extracted with CHCl₃, and the combined organic layer was washed with water and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc = 3/1) to give alcohol **11** (1.12 g, 50% (2 steps)). Colorless solid; m.p.: 39-40 °C; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.17 (s, 1H), 4.93 (s, 2H), 3.48 (d, *J* = 7.1 Hz, 3H), 2.05 (s, 1H), 1.81-1.75 (m, 1H), 1.36-1.24 (m, 8H), 0.92-0.87 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 164.45, 163.18, 158.02, 144.21, 139.68, 118.01, 60.26, 42.28, 38.37, 30.39, 28.45, 23.72, 23.00, 14.05, 10.39; MS (GC) *m/z* 295 (M⁺, Calcd 295). Anal. Calcd for C₁₅H₂₁NO₃S: C, 60.99; H, 7.17; N, 4.74. Found: C, 60.94; H, 7.05; N, 4.80.

Synthesis of **5**: To a stirred solution of **11** (1.12 g, 3.78 mmol) in CH₂Cl₂ (38 mL) was added MnO₂ (3.28 g, 37.8 mmol), and the resulting mixture was stirred at room temperature. After stirring for 12 h, the reaction mixture was filtered over celite with CHCl₃ as an eluent. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc = 3/1) to give aldehyde **5** (884 mg, 80%). Colorless liquid; ¹H NMR (400 MHz, CDCl₃, TMS): δ 10.03 (s, 1H), 7.90 (s, 1H), 3.54 (d, *J* = 7.3 Hz, 2H), 1.82-1.76 (m, 1H), 1.38-1.24 (m, 8H), 0.93-0.867 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 182.87, 163.12, 162.12, 153.61, 146.75, 143.51, 127.59, 42.75, 38.32, 30.36, 28.38, 23.69, 22.96, 14.03, 10.33; MS (GC) *m/z* 293 (M⁺, Calcd 293). Anal. Calcd for C₁₅H₁₉NO₃S: C, 61.41; H, 6.53; N, 4.77. Found: C, 61.25; H, 6.45; N, 4.77.

Synthesis of TImi-TzTz: **5** (395 mg, 1.35 mmol), etahnedithioamide (81 mg, 0.67 mmol) were placed in a test tube with screw cap and dissolved with DMF (14 mL), and the resulting mixture was stirred at 140 °C for 12 h. After being

cooled to room temperature, the reaction mixture was quenched by addition of water, and the organic layer was separated with CHCl₃. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (CHCl₃), followed by precipitation using CHCl₃ and acetone to give **TImi-TzTz** (360 mg, 80%). Yellow solid; m.p.: > 300 °C; ¹H NMR (400 MHz, CDCl₃, TMS): δ 7.71 (s, 2H), 3.54 (d, *J* = 7.7 Hz, 4H), 1.81 (m, 2H) , 1.38-1.28 (m, 16H), 0.94-0.88 (m, 12H); ¹³C NMR (100 MHz, CDCl₃): δ 163.65, 162.56, 153.76, 143.79, 141.08, 134.35, 132.84, 125.93, 42.57, 38.38, 30.40, 28.45, 23.74, 23.00, 14.06, 10.38; MS MALDI-TOF(1,8,9-trihydroxyanthracene matrix) *m/z* 667.82 (M⁺, Calcd 668.16); Anal. Calcd for C₃₂H₃₆N₄O₄S₄: C, 57.46; H, 5.42; N, 8.38. Found: C, 57.37; H, 5.53; N, 8.37.

Synthesis of *S*-*TImi*-*TzTz*: TImi-TzTz (227 mg, 0.34 mmol) and Davy's reagent (384 mg, 1.35 mmol) were placed in a test tube with screw cap and dissolved with toluene (36 mL), and the resulting mixture was stirred at 120 °C for 12 h. After removal of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel (CHCl₃), followed by precipitation using CHCl₃ and acetone to give *S*-*TImi*-*TzTz* (219 mg, 88%). Black solid; m.p.: 245-253 °C decomp.; ¹H NMR (400 MHz, CDCl₃/CS₂, TMS): δ 7.71 (s, 2H), 4.23 (d, *J* = 7.3 Hz, 4H), 2.12 (m, 2H), 1.38-1.24 (m, 16H), 0.91-0.86 (m, 12H); MS MALDI-TOF(1,8,9-trihydroxyanthracene matrix) *m/z* 731.67 (M⁺, Calcd 732.07); Anal. Calcd for C₃₂H₃₆N₄S₈: C, 52.42; H, 4.95; N, 7.64. Found: C, 52.29; H, 5.09; N, 7.78.

NMR Spectra

¹H NMR spectrum of **Imi-a-BT**.

¹H NMR spectrum of **S-Imi-a-BT**.

¹H NMR spectrum of **S-Imi-TzTz**.

¹H NMR spectrum of **TImi-TzTz**.

¹H NMR spectrum of **S-TImi-TzTz**

OFET Device Fabrication

The field-effect mobility was measured using bottom-contact thin-film field-effect transistor (FET) geometry. The pdoped silicon substrate functions as the gate electrode. A thermally grown silicon oxide dielectric layer on the gate substrate was 300 nm thick with a capacitance of 10.0 nF cm⁻². Interdigital source and drain electrodes were constructed with gold (30 nm) that were formed on the SiO₂ layer. The channel width (*W*) and channel length (*L*) were 294 mm and 25 μ m, respectively. The silicon oxide surface was washed with toluene, acetone, water, and 2-propanol. The silicon oxide surface was then activated by ozone treatment and pretreated with ODTS. The semiconductor layer was dropcasted on the Si/SiO₂ substrate from 10 mg/mL chlorobenzene solution. The characteristics of the OFET devices were measured at room temperature under a pressure of 10⁻³ Pa. The current-voltage characteristics of devices were measured by using a KEITHLEY 4200SCS semiconductor parameter analyzer. The field-effect electron mobility (μ_e) was calculated in the saturated region at the V_{DS} of 100 V and the current on/off ratio was determined from the I_{DS} at $V_{GS} = -$ 20 V (I_{off}) and $V_{GS} = 100$ V (I_{on}) by the following equation.

$$I_{\rm DS} = \frac{W}{2L} C_i \mu (V_{GS} - V_{th})^2$$

Photovoltaic Device Fabrication

Organic photovoltaic devices were prepared with a structure of ITO/PEDOT:PSS/active layer/Ca/Al. ITO-coated glass substrates were first cleaned by ultrasonication in toluene, acetone, H₂O, and 2-propanol for 10 min, respectively, followed by O₂ plasma treatment for 10 min. ITO-coated glass substrates were then activated by ozone treatment for 1 h. PEDOT:PSS was spin-coated on the ITO surface at 3000 rpm for 1 min and dried at 135 °C for 10 min. The active layers were then prepared by spin-coating on the ITO/PEDOT:PSS electrode at 1000 rpm for 2 min in a glove box. The typical thickness of the active layer was 90–110 nm. Ca and Al electrode were evaporated on the top of active layer through a shadow mask to define the active area of the devices (0.09 cm^2) under a vacuum of 10^{-5} Pa to a thickness of 30, 100 nm determined by a quartz crystal monitor. After sealing the device from the air, the photovoltaic characteristics were measured in air under simulated AM 1.5G solar irradiation (100 mW cm⁻²) (SAN-EI ELECTRIC, XES-301S). The current-voltage characteristics of photovoltaic devices were measured by using a KEITHLEY 2400 source meter. The EQE spectra were measured by using a Soma Optics Ltd. S-9240. The thickness of active layer was determined by KLA Tencor Alpha-step IQ.

Surface Free Energy Estimation

The contact angles of compounds were measured by a NiCK LSE-ME1 with distilled water and glycerol. The surface free energy was estimated based on the established theory.^{3,4}

Compounds	Contact angle (°)	Contact angle (°)	Surface free energy (mJ/m^2)
	(H ₂ O)	(glycerol)	
Imi-a-BT	88.5	97.8	26.1
S-Imi-a-BT	101.4	95.2	13.12
S-Imi-TzTz	88.2	86.4	19.3
РЗНТ	107.2	102.6	9.7
PC ₆₁ BM	80.9	65.9	33.7

Contact angle measurements of (a) **Imi-a-BT** (H₂O), (b) **Imi-a-BT** (glycerol), (c) **S-Imi-a-BT** (H₂O), (d) **S-Imi-a-BT** (glycerol), (e) **S-Imi-TzTz** (H₂O), (f) **S-Imi-TzTz** (glycerol), (g) **P3HT** (H₂O), (h) **P3HT** (glycerol), (i) **PC**₆₁**BM** (H₂O), (j) **PC**₆₁**BM** (glycerol).

Computational Details

All calculations were conducted using Gaussian 09 program. The geometry was optimized with the restricted Becke Hybrid (B3LYP) at 6-31 G(d, p) level. TD-DFT calculation was performed at the Coulomb attenuated method (CAM) corrected B3LYP/6-31G(d,p) level.

The calculated excited state of S-Imi(Me)-a-BT					
Excited State	1:	2.6651 eV (465	.2 nm) $f = 1.75$		
HOMO(145	5)-LUI	MO(146)	0.61020		
HOMO(145)-LUI	MO+2(148)	0.24527		
Excited State	2:	3.5648 eV (347	.8 nm) $f = 0.53$		
141 -147	0.4	1255			
Excited State	3:	3.5738 eV (346	(.9 nm) f = 0.37		
141 -146	0.4	0393			
145 -148	0.2	3361			
Excited State	4: 3	.8235 eV (324.3	nm) $f = 0.41$		
136 -146	0.4	1832			
137 -147	0.4	0120			
142 -146	0.2	2446			

The calculated excited state of S-Imi(Me)-TzTz

Excited State	1:	2.8636 eV (4	33.0 n	m) $f = 1.15$	5
HOMO(1	34)	-LUMO(135)		0.63279	
HOMO(1	34)-	LUMO+2(137)	0.14336	

Excited State 2: 3.5155 eV (352.7 nm) f = 1.12125 -136 0.26660130 -135 0.41381131 -136 0.37283

Optimized structure of Imi(Me)-a-BT

Center	Atom	nic .	Atomic	Coordinate	s (Angstroms)
Number	Nui	nber	Туре	X Y	Ζ
1	6	0	5.509313	-0.915028	-0.000137
2	6	0	-1.458367	-0.947305	-0.000182
3	6	0	-0.724566	0.292496	-0.000330
4	6	0	0.724247	0.292670	-0.000725
5	6	0	1.458340	-0.946956	-0.000829
6	6	0	0.707215	-2.116284	-0.000647
7	6	0	-0.706967	-2.116454	-0.000393
8	7	0	-1.260876	1.515276	-0.000168
9	16	0	-0.000433	2.570503	-0.000640
10	7	0	1.260264	1.515579	-0.000850
11	6	0	-2.871988	-0.953409	0.000059
12	6	0	2.871963	-0.952733	-0.000922
13	6	0	-4.089012	-0.950683	0.000147
14	6	0	4.088986	-0.949911	-0.000796
15	6	0	-5.509334	-0.915575	-0.000179
16	6	0	-6.252133	-2.119842	-0.004819
17	6	0	-7.647780	-2.113755	-0.005877
18	6	0	-8.288104	-0.882399	-0.000581
19	6	0	-7.564197	0.312982	0.004266
20	6	0	-6.182855	0.330202	0.003794
21	6	0	6.183064	0.330623	-0.004068
22	6	0	7.564407	0.313136	-0.004100
23	6	0	8.288095	-0.882374	0.001134
24	6	0	7.647540	-2.113604	0.006365
25	6	0	6.251893	-2.119431	0.004868
26	6	0	8.538312	1.448727	-0.005912
27	7	0	9.808328	0.852542	-0.001300
28	6	0	9.742775	-0.550342	0.003338
29	6	0	-9.742737	-0.550198	-0.002319
30	7	0	-9.808018	0.852789	0.002238
31	6	0	-8.537973	1.448693	0.006338
32	8	0	8.321631	2.643313	-0.005196
33	8	0	10.700047	-1.298290	0.013387
34	8	0	-10.699967	-1.298204	-0.012017
35	8	0	-8.321388	2.643299	0.005525
36	6	0	11.051586	1.601985	-0.006353
37	6	0	-11.050909	1.602838	0.007759
38	1	0	1.228039	-3.067693	-0.000706
39	1	0	-1.227565	-3.067987	-0.000299
40	1	0	-5.712533	-3.060834	-0.007931
41	1	0	-8.216621	-3.037609	-0.010586
42	1	0	-5.625940	1.260505	0.006363
43	1	0	5.626327	1.261032	-0.006921
44	1	0	8.216206	-3.037565	0.011372
45	1	0	5.712115	-3.060321	0.007932
46	1	0	10.888194	2.550812	0.506357
47	1	0	11.813561	1.014191	0.507139
48	1	0	11.387602	1.804016	-1.028500
49	1	0	-11.819076	1.002414	-0.481166
50	1	0	-11.372283	1.828413	1.029683
51	1	0	-10.896469	2.539916	-0.528929

Optimized structure of S-Imi(Me)-a-BT

Center	Atomic	At	omic	Coordinates	(Angstroms)
Number	Numb	ber	Type	X Y	Z
1	6	0	-5.508314	-0.979132	-0.000243
2	6	0	1.458251	-0.985749	-0.000198
3	6	0	0.724437	0.254089	-0.000223
4	6	0	-0 724447	0.254083	-0.000223
5	6	0	-0.724447	-0.085760	-0.000241
5	6	0	0.706942	2 155274	0.000234
0	6	0	-0.700042	2 155269	-0.000240
/	0	0	1.200512	-2.133308	-0.000213
0	1	0	1.200312	1.4/0804	-0.000198
9	10	0	-0.000013	2.331800	-0.000242
10	/	0	-1.260531	1.4/6/95	-0.000273
11	6	0	2.871357	-0.993959	-0.000156
12	6	0	-2.871359	-0.993982	-0.000279
13	6	0	4.088657	-0.997022	-0.000024
14	6	0	-4.088659	-0.997043	-0.000307
15	6	0	5.508312	-0.979120	0.000077
16	6	0	6.235887	-2.195226	0.000363
17	6	0	7.627712	-2.207543	0.000465
18	6	0	8.292476	-0.984337	0.000270
19	6	0	7.581304	0.225490	-0.000024
20	6	0	6.196975	0.255146	-0.000121
21	6	0	-6.196974	0.255136	0.000020
22	6	0	-7.581302	0.225486	0.000091
23	6	0	-8.292476	-0.984339	-0.000102
24	6	0	-7.627717	-2.207549	-0.000369
25	6	0	-6.235892	-2.195237	-0.000434
25 26	6	Ő	-8 559404	1 326776	0.000328
20	7	0	-0 810844	0.710612	0.000320
27	6	0	-9.010044	-0.675055	0.000241
20	6	0	0.727003	0.675047	0.000320
29	0	0	0.010051	0.710602	0.000320
21		0	9.010031	1.226791	0.000043
20	0	0	8.339400	1.320781	-0.000188
32	6	0	-11.050001	1.4/3/33	0.000532
33	6	0	11.056665	1.4/3/53	-0.000010
34	I	0	-1.227694	-3.106760	-0.000262
35	1	0	1.227706	-3.106752	-0.000204
36	1	0	5.684306	-3.129089	0.000509
37	1	0	8.185661	-3.137945	0.000692
38	1	0	5.654602	1.193992	-0.000348
39	1	0	-5.654598	1.193980	0.000162
40	1	0	-8.185670	-3.137948	-0.000516
41	1	0	-5.684312	-3.129101	-0.000636
42	1	0	-11.103816	5 2.110593	-0.885830
43	1	0	-11.879420	0.760568	-0.000189
44	1	0	-11.104274	2.109262	0.887834
45	1	0	11.879426	0.760564	0.000289
46	1	0	11.104173	2.109667	-0.887023
47	1	0	11.103930	2.110171	0.886649
48	16	0	8.277252	2.950041	-0.000536
49	16	0	10.98901	5 -1.737636	5 0.000638
50	16	Õ	-8.277224	2.950044	0.000696
51	16	Õ	-10,98902	2 -1.73761	5 -0.000113

Optimized structure of Imi(Me)-TzTz

Center	Atom	ic A	tomic	Coordinate	s (Angstroms)
Number	Nur	nber	Туре	X Y	Ζ
1	6	0	6.391261	0.923878	-0.000052
2	6	0	5.825844	-0.354199	-0.000166
3	6	0	4.458680	-0.548996	-0.000264
4	6	0	3.630360	0.596247	-0.000181
5	6	0	4.210362	1.880986	-0.000092
6	6	0	5.595636	2.059632	-0.000052
7	6	0	7.876490	0.783083	0.000013
8	7	0	8.120934	-0.600680	0.000109
9	6	0	6.938225	-1.354502	-0.000171
10	8	0	8.726204	1.651132	-0.000047
11	8	0	6.881380	-2.567053	-0.000398
12	6	0	9.447648	-1.189981	0.000687
13	6	0	2.177158	0.407405	-0.000143
14	7	0	1.608661	-0.778538	-0.000091
15	6	0	0.265130	-0.642384	-0.000027
16	6	0	-0.265130	0.642382	-0.000022
17	16	0	1.045021	1.791219	-0.000119
18	16	0	-1.045021	-1.791221	0.000073
19	6	0	-2.177158	-0.407406	0.000098
20	7	0	-1.608661	0.778536	0.000045
21	6	0	-3.630360	-0.596247	0.000145
22	6	0	-4.210362	-1.880986	0.000019
23	6	0	-5.595637	-2.059632	-0.000008
24	6	0	-6.391261	-0.923877	0.000050
25	6	0	-5.825844	0.354199	0.000198
26	6	0	-4.458680	0.548996	0.000278
27	6	0	-7.876490	-0.783082	0.000021
28	7	0	-8.120933	0.600681	-0.000049
29	6	0	-6.938224	1.354503	0.000255
30	8	0	-8.726205	-1.651131	0.000032
31	8	0	-6.881379	2.567053	0.000496
32	6	0	-9.447647	1.189984	-0.000606
33	1	0	4.021699	-1.540524	-0.000370
34	1	0	3.570750	2.758561	-0.000031
35	1	0	6.035957	3.050978	0.000001
36	1	0	10.169297	-0.372848	-0.011835
37	1	0	9.593804	-1.801523	0.894927
38	1	0	9.584259	-1.821581	-0.880866
39	1	0	-3.570751	-2.758562	-0.000084
40	1	0	-6.035959	-3.050978	-0.000090
41	1	0	-4.021698	1.540524	0.000410
42	1	0	-10.169299	0.372845	0.011342
43	1	0	-9.584473	1.821128	0.881243
44	1	0	-9.593585	1.801988	-0.894561

Optimized structure of **S-Imi(Me)-TzTz**

Center	Atomic	A	tomic	Coordinate	es (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	6.392217	0.944908	0.000012
2	6	0	5.827764	-0.339785	0.000019
3	6	0	4.457269	-0.533149	0.000002
4	6	0	3.627181	0.607306	0.000004
5	6	0	4.203978	1.895803	0.000056
6	6	0	5.585190	2.077705	0.000053
7	6	0	7.853908	0.807487	-0.000010
8	7	0	8.100178	-0.567282	0.000040
9	6	0	6.928930	-1.318277	0.000028
10	6	0	9.425863	-1.170485	-0.000001
11	6	0	2.175749	0.413333	-0.000051
12	7	0	1.610169	-0.774341	-0.000159
13	6	0	0.266862	-0.642082	-0.000098
14	6	0	-0.266862	0.642082	0.000066
15	16	0	1.038995	1.794382	0.000152
16	16	0	-1.038995	-1.794382	2 -0.000179
17	6	0	-2.175749	-0.413333	0.000013
18	7	0	-1.610169	0.774341	0.000131
19	6	0	-3.62/181	-0.60/306	-0.000028
20	6	0	-4.203978	-1.895803	-0.000077
21	6	0	-5.585190	-2.077705	-0.000062
22	6	0	-6.392217	-0.944908	-0.000013
23	6	0	-5.827764	0.339785	-0.000021
24	6	0	-4.45/268	0.533149	-0.000014
25	6	0	-7.853908	-0.80/48/	0.000022
26		0	-8.100178	0.567282	-0.000005
27	6	0	-6.928930	1.3182//	-0.000018
28	0	0	-9.425863	1.1/0485	0.000056
29	1	0	4.024845	-1.520///	-0.000028
30 21	1	0	5.502390	2.//1/0/	0.000100
22	1	0	0.024570	3.009379	0.000089
32 22	1	0	10.160038	-0.300408	0.000167
33 24	1	0	9.546952	-1./90903	0.886710
54 25	1	0	9.547060	-1./90045	-0.880928
35	1	0	-3.302390	-2.//1/0/	-0.000128
30 27	1	0	-0.024570	-3.0093/9	-0.000095
31	1	0	-4.024845	1.520///	0.000015
38 20	1	0	-10.160038	0.300409	0.000000
39 40	1	0	-9.54/006	1.790/20	0.880933
40	1	U	-9.54/00/	1./96883	
41	10	0	-0.841013	2.963065	
42	10	0	0.841013	-2.903064	0.000102
43	10	0	8.981336 8.001257	2.011249	
44	10	0	-8.98135/	-2.011249	<i>•</i> 0.000120

Optimized structure of Imi(Me):

Center	Atomi	c.	Atomic	Coordinate	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
1	6	0	-2.907806	-0.704457	0.000005
2	6	0	-2.909765	0.695867	0.000003
3	6	0	-1.710653	1.420791	-0.000001
4	6	0	-0.527821	0.697066	-0.000004
5	6	0	-0.525836	-0.699429	-0.000003
6	6	0	-1.706723	-1.426169	0.000003
7	6	0	0.889784	1.168414	-0.000004
8	7	0	1.673199	0.002171	-0.000001
9	6	0	0.894206	-1.164387	-0.000013
10	6	0	3.124601	-0.000755	0.000011
11	1	0	-3.856960	1.226601	0.000006
12	1	0	-1.699558	2.505788	-0.000002
13	1	0	-1.692775	-2.511146	0.000003
14	1	0	3.453767	1.038667	-0.000073
15	1	0	3.505775	-0.511935	0.887959
16	1	0	3.505780	-0.512088	-0.887845
17	1	0	-3.853690	-1.237814	0.000009
18	8	0	1.332916	-2.297223	-0.000002
19	8	0	1.317753	2.305359	-0.000002

Optimized structure of **S-Imi(Me)**:

Center	Atomic	A	tomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-3.132143	-0.788287	-0.000006
2	6	0	-3.170705	0.613363	-0.000003
3	6	0	-1.993801	1.368014	0.000002
4	6	0	-0.785626	0.679583	0.000005
5	6	0	-0.747569	-0.722149	0.000004
6	6	0	-1.915097	-1.476694	-0.000004
7	6	0	0.599072	1.176840	0.000004
8	7	0	1.406652	0.038695	-0.000002
9	6	0	0.662980	-1.138139	0.000014
10	6	0	2.862842	0.055818	-0.000012
11	1	0	-4.131006	1.119738	-0.000005
12	1	0	-2.010136	2.452840	0.000002
13	1	0	-1.871006	-2.560768	-0.000003
14	1	0	3.185298	1.095852	-0.000097
15	1	0	3.239087	-0.459357	0.886791
16	1	0	3.239072	-0.459505	-0.886733
17	16	0	1.283951	-2.665321	0.000002
18	16	0	1.108902	2.745145	0.000001
19	1	0	-4.063243	-1.346931	-0.000009

Optimized structure of **S-TImi(Me)**:

Center	Atom	ic A	tomic	Coordinate	s (Angstroms)
Number	Nun	ıber	Туре	X Y	Z
1	6	0	2.567916	-1.592037	-0.000016
2	16	0	2.630585	0.154221	-0.000070
3	6	0	0.911944	0.216188	0.000032
4	6	0	0.343252	-1.037619	0.000079
5	6	0	1.289891	-2.093797	0.000025
6	6	0	-0.123813	1.233938	-0.000074
7	7	0	-1.325382	0.512586	-0.000717
8	6	0	-1.112623	-0.869773	0.000004
9	16	0	-2.265291	-2.048604	0.000181
10	16	0	0.018571	2.876526	0.000245
11	6	0	-2.632672	1.153606	-0.000173
12	1	0	3.495952	-2.147459	0.000030
13	1	0	1.047409	-3.148728	0.000087
14	1	0	-3.387326	0.368337	-0.010547
15	1	0	-2.745985	1.772947	0.892702
16	1	0	-2.737586	1.789474	-0.882219

References

(1) F. Schlütter, A. Wild, A. Winter, M. D. Hager, A. Baumgaertel, C. Friebe and U. S. Schubert, *Macromolecules*, 2010, **43**, 2759.

- (2) H. Kristin, B. Tore, H. Hakon, U. Kjell, Acta Chem.Scand., 1997, 51, 392.
- (3) K.-Y. Pu, B. Liu, J. Phys. Chem. B, 2010, 114, 3077.
- (4) D. H. Kaelble, K. C. Uy, J. Adhesion, 1970, 2, 50.