Electronic Supplementary Information (ESI)

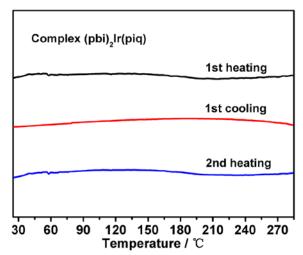
Orange iridium(III) complex with wide-bandwidth in electroluminescence for high-quality white organic light-emitting diode

Hongtao Cao, a, Guogang Shan, Luemei Wen, Haizhu Sun, a Zhongmin Su, a Ronglin Zhong, Wenfa Xie, Peng Li and Dongxia Zhu

^aCollege of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China

^bState Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin, 130012, P. R. China

E-mail: sunhz335@nenu.edu.cn; zmsu@nenu.edu.cn; xiewf@jlu.edu.cn


^{*}Corresponding author: Dr. Haizhu Sun; Prof. Zhongmin Su; Prof. Wenfa Xie

^{*}These authors contributed equally to this work.

Table S1 The calculated energy	levels of the lower-lying tran	sitions of complex (pbi) Ir(bia).
Table 31 The calculated energy	ievels of the lower-tyllig trail	isitions of combiex (biblish (bit).

States	Assignment ^a	eV	λ (nm)	f	Nature ^b
T_1	H→L (90%)	2.11	587	0	³ MLCT/ ³ LLCT/ ³ LC
T_2	H-2→L (83%)	2.53	489	0	³ MLCT/ ³ LLCT/ ³ LC
T_3	H-1→L (89%)	2.85	434	0	³ MLCT/ ³ LLCT/ ³ LC

^a H and L denote HOMO and LUMO, respectively. ^b MLCT, LLCT and LC denote metal-to-ligand charge transfer, ligand-to-ligand charge transfer and ligand centered, respectively.

Fig. S1 DSC curves of complex (**pbi**)₂**Ir**(**piq**). Heating and cooling rates are 10 °C min⁻¹ in a nitrogen atmosphere.

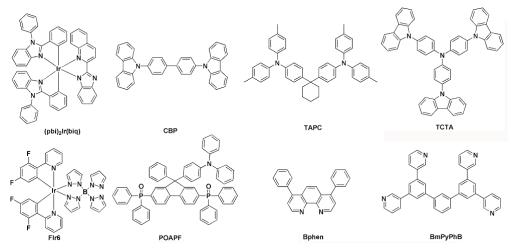


Fig. S2 Chemical structures of the materials used in OLEDs.

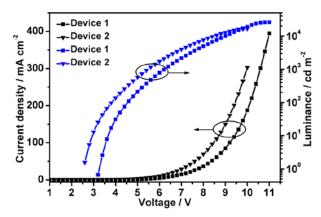


Fig. S3 Current density-voltage-luminance characteristics for orange devices 1 and 2.

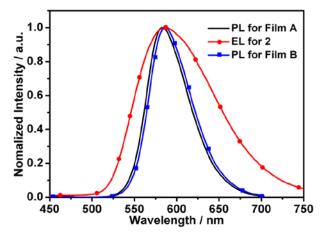


Fig. S4 PL spectra of (pbi)₂Ir(biq) in the spin-coated (Film A) and evaporated neat films (Film B) and EL spectrum for orange device 2.