Supporting Information

Interface engineering for suppression of flat-band voltage shift in the solution-processed ZnO / polymer dielectric thin film transistor

By Kyongjun Kim, Eungkyu Lee, Joohee Kim, Si Yun Park, Keon-Hee Lim, ChaeHo Shin and Youn Sang Kim

Table S1. Definition of the variables used in the analytic model.

Variables	Definition	Values	Units
W	Width of the channel	1000	μm
L	Length of the channel	50	μm
V _G	Gate bias voltage	-	
V _D	Voltage at the drain electrode	30	V
V _S	Voltage at the source electrode	0	V
C_i	Capacitance of the gate-insulator per	9.00	nF cm ⁻²
	unit area		
Es	Relative electrical permittivity in ZnO	7.5	-
n ₀	Charge-carrier number of ZnO per unit	10 ¹⁹	cm ⁻³
	volume		
Т	Temperature of the device	298	K
V_{FB}	Flat-band voltage Fitting parame		V
T_0	Trap characteristic temperature	Fitting parameter	K
N_t	Total number of trap state per unit	Fitting parameter	cm ⁻³
	volume at T		
$\sigma_{_0}$	Conductivity of ZnO at infinite	Fitting parameter	S cm ⁻¹
	temperature		

	ZnO/SAIL/PVP TFT		ZnO/PVP TFT		Units
	Forward	Backward	Forward	Backward	
V _{FB}	0.009	0.499	-2.742	6.014	V
T_0	553	553	550	552	K
N _t	2.95*10 ¹⁹	2.94*10 ¹⁹	2.53*10 ¹⁹	2.10*10 ¹⁹	cm ⁻³
σ_0	2.23	2.35	2.25	2.99	S cm ⁻¹

Table S2. Values of fitting parameters used for the simulation in Figure 5.

Figure S1. HR-TEM images of solution processed ZnO semiconductor on polymer dielectric layer were shown. (a) The poly crystalline ZnO semiconductor was well deposited on the highly cross linked PVP, c-PVP, dielectric layer with 629 nm thickness. (b) The flexible gate & substrate was fabricated with 20 nm ITO on the polyester (PET) film.

Figure S2. (a) Cross-sectional HR-TEM image of solution processed ZnO semiconductor on polymer dielectric layer were shown. (b) The solution processed ZnO shows crystalline FFT-SAED patterns.

Figure S3. 3D views of AFM images: (a) 3D view of ZnO thin film on PVP without interface engineering (RMS=5.33 nm), (b) 3D view of intrinsic ZnO thin film on PVP with interface engineering (RMS= 2.92 nm)

Figure S4. Voltage-dependent capacitance of both the SAIL coated PVP and the intrinsic PVP at 100 kHz.

Figure S5. Cross-sectional SEM images of polymer dielectric layers were shown. (a) The thickness of spin-coated PVP at 2000 rpm was 598 nm. (b) The thickness spin-coated TPC at 2000 rpm was 137 nm. (c) The thickness of spin-coated double dielectric layer was 615 nm that is the sum of TPC and PVP layer by spin-coating at 2000 rpm.

Figure S6. The $I_{DS}^{1/2} - V_G$ transfer curves of the flexible ZnO/SAIL/PVP TFT in accordance with before and during bending.

Figure S7. Optical spectroscopy images: (a) the ITO PET before bending; (b) the ITO PET after bending. (C) The ZnO/SAIL/PVP TFT was shown reliable flexibility without any delamination after bending.