Annealing of sulfide stabilized colloidal semiconductor nanocrystals

Ruben Dierick^{*, \Gamma}, Boris Capon^{†, \Gamma}, Hanne Damm^{T, \Gamma}, Stijn Flamee^{*,†}, Pieter Arickx^{*, \Gamma}, Els Bruneel[†], Dirk Van Genechten[†], Marlies Van Bael^T, An Hardy^T, Christophe Detavernier[†], Zeger Hens^{*}

* Physics and Chemistry of Nanostructures, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium

⁺ Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Ghent, Belgium

† Umicore Group Research & Development, Kasteelstraat 7, B 2250 Olen, Belgium

^t Physical and Inorganic Chemistry, Ghent University, Krijgslaan 281-S3, B-9000 Ghent, Belgium

⁺ Inorganic and Physical Chemistry, Hasselt University and imec, division imomec, Agoralaan-D, B-3590 Diepenbeek, Belgium

^г SIM SoPPoM project

Corresponding author email address: ruben.dierick@ugent.be, zeger.hens@ugent.be

Supporting Information

Synthesis of colloidal nanocrystals

Chemicals

 $Cu(acac)_2$ (Aldrich, 99,99%), $Zn(OAc)_2.2H_2O$ (Aldrich, 99,999%), $SnCl_4$ (Aldrich, 98%), Se (Alfa Aesar, 99,999%), Oleylamine (Acros, Tech. 80-90%), 1-Octadecene(Alfa Aesar, Tech. 90%).

Cu₂ZnSnSe₄ (Fig S1 a-c)

- 1.35 mmol Cu(acac)₂, 1.6 mmol Zn(OAc)₂.2H₂O and 0.75 mmol SnCl₄ are combined with 10 ml oleylamine in a three-neck flask
- Flask is attached to a Schlenk line and flushed with nitrogen for 1h during stirring at room temperature
- Meanwhile, 2.975 mmol Se is dispersed in 2 ml of oleylamine and stirred at room temperature
- The flask containing the cations is heated to 250°C, after which the Se-oleylamine mixture is rapidly injected
- The mixture is allowed to react for 15 min at 240°C
- Reaction is cooled down using a water bath
- Toluene and ethanol are added to wash the NCs
- The precipitant collected after centrifugation is redissolved in toluene
- 2 additional washing steps are carried out right before layer deposition or ligand exchange

CdSe (Synthesis according to Jasieniak et al¹, Fig S3 a-c)

Characterization of CIS NCs capped by ammonium sulfide

Fig. S1 Characterization of CIS NCs after ligand exchange to $(NH_4)_2S$. (a) TEM image. (b) UV-VIS-NIR spectrum of a NC solution. (c) XRD pattern of a NC thin film.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2013

Characterization of CZTSe and CdSe NCs

Fig. S2 Characterization of CZTSe NCs.(a) TEM image. (b) UV-VIS-NIR spectrum of a NC solution. (c) XRD pattern of a NC thin film.

Fig. S3 Characterization of CdSe NCs. (a) TEM image. (b) UV-VIS spectrum of a NC solution. (c) XRD pattern of a NC thin film.

Annealing of CZTSe and CdSe NCs stabilized by $(NH_4)_2S$

Fig. S4 Comparison of annealing behavior of CZTSe NCs capped with $(NH_4)_2S$. (a-b) In-situ XRDs following the (112) peak during the heating process in helium respectively forming gas. (c-d) Pattern taken after the thermal treatment in helium (c) and forming gas (d). (*) Indicate the formation of the binary phase SnSe, as observed in the upper right part of (b).

Fig. S5 Comparison of annealing behavior of CdSe NCs capped with $(NH_4)_2S$. (a-b) In-situ XRDs following the (112) peak during the heating process in helium respectively forming gas. (c-d) Pattern taken after the thermal treatment in helium (c) and forming gas (d).

	CuInS ₂				Cu ₂ ZnSnSe ₄			CdSe		
	Synth.	Ann. He	Ann. He	Ann. H ₂	Synth.	Ann. He	Ann. H ₂	Synth.	Ann. He	Ann. H ₂
Ligand	Oleylamine	Oleylamine	(NH ₄) ₂ S	(NH ₄) ₂ S	Oleylamine	(NH ₄) ₂ S	(NH ₄) ₂ S	Oleic acid	(NH ₄) ₂ S	(NH ₄) ₂ S
Peak posi- tion (°)	27,9	27,9	27,9	27,9	27,0	27,0	27,2	25,5	25,5	25,6
Crys- tallite size (nm)	4,0	8,2	5,7	14,6	11,7	12,9	16,5	4,0	6,8	11,7

Scherrer analysis

Table S1 Peak positions for the (112) peak and corresponding crystallite sizes calculated using the Scherrer formula (shape factor=0,9). Synth. = Pattern from as-synthesized NCs. Ann.He/H₂ = Pattern from NC thin films annealed in helium/forming gas.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is O The Royal Society of Chemistry 2013

References

(1) Jasieniak, J., Bullen, C., van Embden, J., & Mulvaney, P. (2005). Phosphine-free synthesis of CdSe nanocrystals. *Jour. Phys. Chem. B*, 109(44), 20665–20668