## **Supporting Information**

## Sr<sub>4</sub>B<sub>10</sub>O<sub>18</sub>(OH)<sub>2</sub>·2H<sub>2</sub>O: A New UV Nonlinear Optical Material with [B<sub>10</sub>O<sub>23</sub>]<sup>16-</sup> Building Block

Fangyuan Zhang,<sup>a,b</sup> Qun Jing,<sup>a,c</sup> Fangfang Zhang,\*<sup>a</sup> Shilie Pan,\*<sup>a</sup> Zhihua Yang,\*<sup>a</sup> Jian Han,<sup>a</sup> Min Zhang<sup>a</sup> and Shujuan Han<sup>a</sup>

| Sr(1)-O(21)#1 | 2.497(4) | O(18)-Sr(2)-O(17)#4   | 118.69(12) |
|---------------|----------|-----------------------|------------|
| Sr(1)-O(2)    | 2.540(4) | O(6)#4-Sr(2)-O(17)#4  | 64.71(11)  |
| Sr(1)-O(22)   | 2.550(4) | O(15)-Sr(2)-O(17)#4   | 117.74(11) |
| Sr(1)-O(9)    | 2.554(4) | O(20)#5-Sr(2)-O(17)#4 | 72.74(11)  |
| Sr(1)-O(12)   | 2.598(4) | O(3)-Sr(2)-O(17)#4    | 50.09(11)  |
| Sr(1)-O(1)    | 2.652(4) | O(10)-Sr(2)-O(17)#4   | 66.97(11)  |
| Sr(1)-O(19)   | 2.737(4) | O(4)#5-Sr(2)-O(17)#4  | 146.27(12) |
| Sr(1)-O(16)   | 2.841(4) | O(2)#8-Sr(3)-O(13)    | 158.06(15) |
| Sr(2)-O(18)   | 2.564(4) | O(2)#8-Sr(3)-O(14)    | 83.64(12)  |
| Sr(2)-O(13)   | 2.581(5) | O(13)-Sr(3)-O(14)     | 78.89(13)  |
| Sr(2)-O(6)#4  | 2.601(4) | O(2)#8-Sr(3)-O(11)    | 95.01(12)  |
| Sr(2)-O(15)   | 2.612(4) | O(13)-Sr(3)-O(11)     | 82.48(12)  |
| Sr(2)-O(20)#5 | 2.615(4) | O(14)-Sr(3)-O(11)     | 119.88(12) |
| Sr(2)-O(3)    | 2.641(3) | O(2)#8-Sr(3)-O(3)     | 84.88(12)  |
| Sr(2)-O(10)   | 2.679(4) | O(13)-Sr(3)-O(3)      | 74.12(12)  |
| Sr(2)-O(4)#5  | 2.835(3) | O(14)-Sr(3)-O(3)      | 53.74(11)  |
| Sr(2)-O(17)#4 | 2.883(4) | O(11)-Sr(3)-O(3)      | 66.24(11)  |
| Sr(3)-O(2)#8  | 2.557(4) | O(2)#8-Sr(3)-O(8)     | 84.99(12)  |
| Sr(3)-O(13)   | 2.581(4) | O(13)-Sr(3)-O(8)      | 109.36(13) |
| Sr(3)-O(14)   | 2.606(4) | O(14)-Sr(3)-O(8)      | 164.59(11) |
| Sr(3)-O(11)   | 2.631(4) | O(11)-Sr(3)-O(8)      | 50.94(11)  |
| Sr(3)-O(3)    | 2.637(4) | O(3)-Sr(3)-O(8)       | 114.85(10) |
| Sr(3)-O(8)    | 2.646(4) | O(2)#8-Sr(3)-O(1)#8   | 74.11(12)  |
| Sr(3)-O(1)#8  | 2.661(4) | O(13)-Sr(3)-O(1)#8    | 125.91(12) |
| Sr(3)-O(12)   | 2.665(4) | O(14)-Sr(3)-O(1)#8    | 117.05(11) |
| Sr(3)-O(16)   | 2.960(4) | O(11)-Sr(3)-O(1)#8    | 120.14(11) |
| Sr(4)-O(20)   | 2.492(4) | O(3)-Sr(3)-O(1)#8     | 158.30(11) |
| Sr(4)-O(22)   | 2.511(4) | O(8)-Sr(3)-O(1)#8     | 69.35(11)  |
| Sr(4)-O(5)    | 2.521(4) | O(2)#8-Sr(3)-O(12)    | 92.38(12)  |
| Sr(4)-O(7)    | 2.541(3) | O(13)-Sr(3)-O(12)     | 93.87(12)  |
| Sr(4)-O(6)    | 2.580(4) | O(14)-Sr(3)-O(12)     | 69.65(12)  |
| Sr(4)-O(19)   | 2.704(4) | O(11)-Sr(3)-O(12)     | 168.53(12) |
| Sr(4)-O(4)    | 2.750(4) | O(3)-Sr(3)-O(12)      | 123.31(11) |
| Sr(4)-O(17)   | 2.821(4) | O(8)-Sr(3)-O(12)      | 121.29(12) |
| B(1)-O(18)    | 1.366(7) | O(1)#8-Sr(3)-O(12)    | 53.86(11)  |
| B(1)-O(15)#1  | 1.368(7) | O(2)#8-Sr(3)-O(16)    | 122.31(12) |
| B(1)-O(10)#1  | 1.375(7) | O(13)-Sr(3)-O(16)     | 79.16(12)  |
| B(2)-O(4)     | 1.442(7) | O(14)-Sr(3)-O(16)     | 126.51(11) |
| B(2)-O(3)#10  | 1.481(7) | O(11)-Sr(3)-O(16)     | 104.62(11) |
| B(2)-O(18)#9  | 1.487(6) | O(3)-Sr(3)-O(16)      | 152.60(10) |
| B(2)-O(17)#1  | 1.495(7) | O(8)-Sr(3)-O(16)      | 68.64(11)  |

Table S1. Selected bond lengths (Å) and bond angles (deg) for  $Sr_4B_{10}O_{18}(OH)_2\cdot 2H_2O.^a$ 

| B(3)-O(6)#5         | 1.449(7)   | O(1)#8-Sr(3)-O(16)   | 48.98(10)  |
|---------------------|------------|----------------------|------------|
| B(3)-O(3)#11        | 1.475(7)   | O(12)-Sr(3)-O(16)    | 63.95(11)  |
| B(3)-O(15)          | 1.484(7)   | O(20)-Sr(4)-O(22)    | 156.55(14) |
| B(3)-O(14)#11       | 1.496(7)   | O(20)-Sr(4)-O(5)     | 91.21(13)  |
| B(4)-O(5)           | 1.337(7)   | O(22)-Sr(4)-O(5)     | 95.68(12)  |
| B(4)-O(17)#1        | 1.375(7)   | O(20)-Sr(4)-O(7)     | 81.45(12)  |
| B(4)-O(7)#1         | 1.381(7)   | O(22)-Sr(4)-O(7)     | 76.05(13)  |
| B(5)-O(21)          | 1.358(7)   | O(5)-Sr(4)-O(7)      | 123.54(12) |
| B(5)-O(9)           | 1.362(7)   | O(20)-Sr(4)-O(6)     | 110.31(13) |
| B(5)-O(16)          | 1.386(7)   | O(22)-Sr(4)-O(6)     | 86.11(13)  |
| B(6)-O(14)          | 1.358(7)   | O(5)-Sr(4)-O(6)      | 117.95(12) |
| B(6)-O(11)#1        | 1.360(7)   | O(7)-Sr(4)-O(6)      | 117.02(12) |
| B(6)-O(8)#1         | 1.369(7)   | O(20)-Sr(4)-O(19)    | 88.12(12)  |
| B(7)-O(19)          | 1.453(7)   | O(22)-Sr(4)-O(19)    | 78.28(12)  |
| B(7)-O(1)#2         | 1.456(7)   | O(5)-Sr(4)-O(19)     | 53.29(11)  |
| B(7)-O(16)#1        | 1.493(7)   | O(7)-Sr(4)-O(19)     | 70.49(11)  |
| B(7)-O(5)           | 1.517(7)   | O(6)-Sr(4)-O(19)     | 160.57(11) |
| B(8)-O(10)#10       | 1.457(7)   | O(20)-Sr(4)-O(4)     | 79.98(12)  |
| B(8)-O(4)           | 1.462(7)   | O(22)-Sr(4)-O(4)     | 123.44(12) |
| B(8)-O(6)           | 1.478(7)   | O(5)-Sr(4)-O(4)      | 75.81(11)  |
| B(8)-O(11)#10       | 1.484(7)   | O(7)-Sr(4)-O(4)      | 153.41(11) |
| B(9)-O(1)#6         | 1.454(7)   | O(6)-Sr(4)-O(4)      | 53.78(12)  |
| B(9)-O(12)#11       | 1.466(7)   | O(19)-Sr(4)-O(4)     | 127.43(11) |
| B(9)-O(7)#11        | 1.478(7)   | O(20)-Sr(4)-O(17)    | 99.36(13)  |
| B(9)-O(21)          | 1.501(7)   | O(22)-Sr(4)-O(17)    | 71.45(12)  |
| B(10)-O(8)          | 1.462(7)   | O(5)-Sr(4)-O(17)     | 166.67(11) |
| B(10)-O(19)#6       | 1.468(7)   | O(7)-Sr(4)-O(17)     | 51.13(11)  |
| B(10)-O(9)#8        | 1.473(7)   | O(6)-Sr(4)-O(17)     | 65.89(11)  |
| B(10)-O(12)#6       | 1.483(7)   | O(19)-Sr(4)-O(17)    | 118.56(10) |
| O(21)#1-Sr(1)-O(2)  | 81.27(13)  | O(4)-Sr(4)-O(17)     | 113.87(11) |
| O(21)#1-Sr(1)-O(22) | 74.05(13)  | O(18)-B(1)-O(15)#1   | 120.3(5)   |
| O(2)-Sr(1)-O(22)    | 153.76(13) | O(18)-B(1)-O(10)#1   | 123.3(5)   |
| O(21)#1-Sr(1)-O(9)  | 122.04(11) | O(15)#1-B(1)-O(10)#1 | 116.2(5)   |
| O(2)-Sr(1)-O(9)     | 83.60(13)  | O(4)-B(2)-O(3)#10    | 115.1(5)   |
| O(22)-Sr(1)-O(9)    | 101.91(13) | O(4)-B(2)-O(18)#9    | 104.8(4)   |
| O(21)#1-Sr(1)-O(12) | 123.89(12) | O(3)#10-B(2)-O(18)#9 | 110.1(4)   |
| O(2)-Sr(1)-O(12)    | 96.79(13)  | O(4)-B(2)-O(17)#1    | 114.4(4)   |
| O(22)-Sr(1)-O(12)   | 104.21(13) | O(3)#10-B(2)-O(17)#1 | 104.2(4)   |
| O(9)-Sr(1)-O(12)    | 113.28(11) | O(18)#9-B(2)-O(17)#1 | 108.3(4)   |
| O(21)#1-Sr(1)-O(1)  | 54.45(11)  | O(6)#5-B(3)-O(3)#11  | 111.5(4)   |
| O(2)-Sr(1)-O(1)     | 74.53(12)  | O(6)#5-B(3)-O(15)    | 110.3(5)   |
| O(22)-Sr(1)-O(1)    | 83.83(12)  | O(3)#11-B(3)-O(15)   | 110.5(4)   |
| O(9)-Sr(1)-O(1)     | 67.60(11)  | O(6)#5-B(3)-O(14)#11 | 110.4(4)   |

| O(12)-Sr(1)-O(1)     | 171.23(12)  | O(3)#11-B(3)-O(14)#11    | 105.8(5) |
|----------------------|-------------|--------------------------|----------|
| O(21)#1-Sr(1)-O(19)  | 72.95(11)   | O(15)-B(3)-O(14)#11      | 108.2(4) |
| O(2)-Sr(1)-O(19)     | 104.33(12)  | O(5)-B(4)-O(17)#1        | 124.0(5) |
| O(22)-Sr(1)-O(19)    | 77.02(12)   | O(5)-B(4)-O(7)#1         | 120.6(5) |
| O(9)-Sr(1)-O(19)     | 164.41(10)  | O(17)#1-B(4)-O(7)#1      | 115.2(5) |
| O(12)-Sr(1)-O(19)    | 53.08(10)   | O(21)-B(5)-O(9)          | 122.5(5) |
| O(1)-Sr(1)-O(19)     | 127.17(11)  | O(21)-B(5)-O(16)         | 122.5(5) |
| O(21)#1-Sr(1)-O(16)  | 166.63(12)  | O(9)-B(5)-O(16)          | 115.0(5) |
| O(2)-Sr(1)-O(16)     | 106.98(12)  | O(14)-B(6)-O(11)#1       | 123.7(5) |
| O(22)-Sr(1)-O(16)    | 95.84(12)   | O(14)-B(6)-O(8)#1        | 123.8(5) |
| O(9)-Sr(1)-O(16)     | 50.53(10)   | O(11)#1-B(6)-O(8)#1      | 112.5(5) |
| O(12)-Sr(1)-O(16)    | 66.50(11)   | O(19)-B(7)-O(1)#2        | 114.4(5) |
| O(1)-Sr(1)-O(16)     | 116.73(11)  | O(19)-B(7)-O(16)#1       | 114.8(4) |
| O(19)-Sr(1)-O(16)    | 113.90(10)  | O(1)#2-B(7)-O(16)#1      | 105.4(4) |
| O(18)-Sr(2)-O(6)#4   | 72.30(11)   | O(19)-B(7)-O(5)          | 104.5(4) |
| O(18)-Sr(2)-O(15)    | 115.72(11)  | O(1)#2-B(7)-O(5)         | 110.3(4) |
| O(6)#4-Sr(2)-O(15)   | 163.79(12)  | O(16)#1-B(7)-O(5)        | 107.4(4) |
| O(18)-Sr(2)-O(20)#5  | 94.54(13)   | O(10)#10-B(8)-O(4)       | 106.9(4) |
| O(6)#4-Sr(2)-O(20)#5 | 119.44(13)  | O(10)#10-B(8)-O(6)       | 110.2(4) |
| O(15)-Sr(2)-O(20)#5  | 75.16(13)   | O(4)-B(8)-O(6)           | 110.5(4) |
| O(18)-Sr(2)-O(3)     | 125.85(11)  | O(10)#10-B(8)-O(11)#10   | 109.0(4) |
| O(6)#4-Sr(2)-O(3)    | 54.92(10)   | O(4)-B(8)-O(11)#10       | 111.8(4) |
| O(15)-Sr(2)-O(3)     | 112.98(11)  | O(6)-B(8)-O(11)#10       | 108.6(4) |
| O(20)#5-Sr(2)-O(3)   | 119.85(12)  | O(1)#6-B(9)-O(12)#11     | 111.4(5) |
| O(18)-Sr(2)-O(10)    | 161.60(12)  | O(1)#6-B(9)-O(7)#11      | 110.5(5) |
| O(6)#4-Sr(2)-O(10)   | 123.32(11)  | O(12)#11-B(9)-O(7)#11    | 111.1(4) |
| O(15)-Sr(2)-O(10)    | 52.22(11)   | O(1)#6-B(9)-O(21)        | 105.9(4) |
| O(20)#5-Sr(2)-O(10)  | 69.76(12)   | O(12)#11-B(9)-O(21)      | 109.9(5) |
| O(3)-Sr(2)-O(10)     | 71.87(10)   | O(7)#11-B(9)-O(21)       | 107.9(5) |
| O(18)-Sr(2)-O(4)#5   | 50.61(11)   | O(8)-B(10)-O(19)#6       | 106.7(4) |
| O(6)#4-Sr(2)-O(4)#5  | 122.45(10)  | O(8)-B(10)-O(9)#8        | 108.1(4) |
| O(15)-Sr(2)-O(4)#5   | 65.48(10)   | O(19)#6-B(10)-O(9)#8     | 112.9(4) |
| O(20)#5-Sr(2)-O(4)#5 | 76.38(12)   | O(8)-B(10)-O(12)#6       | 110.5(5) |
| O(3)-Sr(2)-O(4)#5    | 163.37(11)  | O(19)#6-B(10)-O(12)#6    | 108.0(5) |
| O(10)-Sr(2)-O(4)#5   | 114.13(10)  | O(9)#8-B(10)-O(12)#6     | 110.6(4) |
|                      | Numerical I | Refined Hydrogen Bonding |          |
| O(2)···O(13)         | 2.4611      | O(2)-H(1)-O(13)          | 177.058  |
| O(13)···O(14)#6      | 3.3581      | O(13)-H(2)-O(14)#6       | 158.662  |
| O(2)···O(11)#1       | 3.6702      | O(2)-H(3)-O(11)#1        | 149.925  |
| O(20)…O(22)#2        | 2.4342      | O(20)-H(4)-O(22)#2       | 174.420  |
| O(20)…O(21)#2        | 3.2980      | O(20)-H(5)-O(21)#2       | 146.405  |
| O(22)#2···· O(7)#1   | 3.6000      | O(22)#2-H(6)-O(7)#1      | 149.512  |
|                      |             |                          |          |

<sup>*a*</sup> Symmetry transformations used to generate equivalent atoms: #1 x, y-1, z; #2 x+1, y-1, z; #3 x-1, y, z; #4 x, y, z+1; #5 x-1, y+1, z+1; #6 x, y+1, z; #7 x, y+1, z+1; #8 x+1, y, z; #9 x+1, y-1, z-1; #10 x, y-1, z-1; #11 x-1, y+1, z; #12 x, y, z-1

|       | U11   | U22   | U33   | U23   | U13   | U12    |
|-------|-------|-------|-------|-------|-------|--------|
| Sr(1) | 8(1)  | 10(1) | 20(1) | 0(1)  | -3(1) | -3(1)  |
| Sr(2) | 9(1)  | 9(1)  | 19(1) | -1(1) | 1(1)  | -3(1)  |
| Sr(3) | 14(1) | 11(1) | 10(1) | 0(1)  | -1(1) | -6(1)  |
| Sr(4) | 15(1) | 10(1) | 11(1) | 1(1)  | -3(1) | -5(1)  |
| B(1)  | 11(3) | 10(3) | 11(3) | -1(3) | 3(3)  | -6(3)  |
| B(2)  | 4(3)  | 4(3)  | 11(3) | -1(2) | 1(2)  | 0(2)   |
| B(3)  | 7(3)  | 5(3)  | 15(3) | -1(3) | -7(2) | 0(2)   |
| B(4)  | 7(3)  | 15(3) | 7(3)  | 2(3)  | -3(2) | -5(3)  |
| B(5)  | 11(3) | 6(3)  | 10(3) | -4(2) | -1(2) | 2(3)   |
| B(6)  | 13(3) | 6(3)  | 14(3) | 2(3)  | -7(3) | -1(3)  |
| B(7)  | 8(3)  | 8(3)  | 10(3) | -2(2) | -1(2) | -3(3)  |
| B(8)  | 6(3)  | 3(3)  | 10(3) | 0(2)  | -5(2) | 1(2)   |
| B(9)  | 8(3)  | 12(3) | 7(3)  | 5(3)  | -4(2) | -5(3)  |
| B(10) | 8(3)  | 8(3)  | 7(3)  | 1(2)  | -3(2) | -3(3)  |
| O(1)  | 8(2)  | 7(2)  | 6(2)  | 0(2)  | -4(2) | -1(2)  |
| O(2)  | 16(2) | 30(3) | 18(3) | 3(2)  | -8(2) | -12(2) |
| O(3)  | 7(2)  | 4(2)  | 9(2)  | 1(2)  | -3(2) | -3(2)  |
| O(4)  | 6(2)  | 6(2)  | 12(2) | -1(2) | -3(2) | -1(2)  |
| O(5)  | 18(2) | 10(2) | 8(2)  | 1(2)  | -5(2) | -7(2)  |
| O(6)  | 8(2)  | 8(2)  | 9(2)  | 3(2)  | -4(2) | -3(2)  |
| O(7)  | 19(2) | 9(2)  | 5(2)  | 3(2)  | -6(2) | -6(2)  |
| O(8)  | 15(2) | 9(2)  | 7(2)  | -1(2) | -2(2) | -6(2)  |
| O(9)  | 7(2)  | 7(2)  | 17(2) | 3(2)  | -2(2) | -3(2)  |
| O(10) | 7(2)  | 7(2)  | 14(2) | 4(2)  | -3(2) | -3(2)  |
| O(11) | 16(2) | 15(2) | 7(2)  | 0(2)  | -1(2) | -8(2)  |
| O(12) | 8(2)  | 5(2)  | 13(2) | -1(2) | 0(2)  | -3(2)  |
| O(13) | 13(2) | 26(2) | 27(3) | 1(2)  | -3(2) | -5(2)  |
| O(14) | 16(2) | 11(2) | 8(2)  | -1(2) | 0(2)  | -8(2)  |
| O(15) | 7(2)  | 8(2)  | 21(2) | 3(2)  | -8(2) | -2(2)  |
| O(16) | 5(2)  | 9(2)  | 22(2) | 3(2)  | -2(2) | -2(2)  |
| O(17) | 17(2) | 12(2) | 9(2)  | 0(2)  | -3(2) | -7(2)  |
| O(18) | 8(2)  | 10(2) | 22(2) | 2(2)  | -4(2) | -5(2)  |
| O(19) | 9(2)  | 6(2)  | 9(2)  | 2(2)  | -6(2) | -3(2)  |
| O(20) | 16(2) | 20(2) | 21(3) | -2(2) | -5(2) | -4(2)  |
| O(21) | 5(2)  | 7(2)  | 19(2) | 2(2)  | -1(2) | -1(2)  |
| O(22) | 14(2) | 17(2) | 26(3) | 4(2)  | -2(2) | -4(2)  |

Table S2. Anisotropic displacement parameters for  $Sr_4B_{10}O_{18}(OH)_2 \cdot 2H_2O$ .

| $d_{\rm in}({\rm pm/V})$                                          | <i>d</i> <sub>11</sub> | <i>d</i> <sub>16</sub> | <i>d</i> <sub>15</sub> | <i>d</i> <sub>12</sub> | <i>d</i> <sub>14</sub> | <i>d</i> <sub>13</sub> | <i>d</i> <sub>22</sub> | <i>d</i> <sub>24</sub> | <i>d</i> <sub>23</sub> | <i>d</i> <sub>33</sub> |
|-------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| $Sr_4B_{10}O_{18}(OH)_2{\cdot}2H_2O$                              | 0.92                   | - 0.48                 | 0.52                   | 0.56                   | 0.03                   | 0.36                   | 0.91                   | 0.56                   | 0.57                   | 0.86                   |
| Sr <sub>2</sub> B <sub>5</sub> O <sub>9</sub> OH·H <sub>2</sub> O |                        | 1.05                   |                        |                        | - 0.81                 |                        | - 0.37                 |                        | - 0.74                 |                        |

## **Table S3.** The SHG coefficients (*d*<sub>in</sub>) for Sr<sub>4</sub>B<sub>10</sub>O<sub>18</sub>(OH)<sub>2</sub>·2H<sub>2</sub>O and Sr<sub>2</sub>B<sub>5</sub>O<sub>9</sub>OH·H<sub>2</sub>O obtained by DFT method.



**Figure S1.** The crystal photograph of  $Sr_4B_{10}O_{18}(OH)_2 \cdot 2H_2O$ .



**Figure S2.** Powder XRD patterns of  $Sr_4B_{10}O_{18}(OH)_2 \cdot 2H_2O$ .



Figure S3. Asymmetric unit of  $Sr_4B_{10}O_{18}(OH)_2 \cdot 2H_2O$ .



Figure S4. The network formed by the Sr-O groups.



Figure S5. Coordination environments of O(2) and O(13).





Figure S7. TGA curve of  $Sr_4B_{10}O_{18}(OH)_2 \cdot 2H_2O$