SUPPORTING INFORMATION FOR

A NEW (TTF)₁₁I₈ ORGANIC MOLECULAR CONDUCTOR: FROM SINGLE CRYSTALS TO FLEXIBLE ALL-ORGANIC PIEZORESISTIVE FILMS

Victor Lebedev, Elena Laukhina,* Evelyn Moreno-Calvo, Concepció Rovira, Vladimir Laukhin, Ivan Ivanov, Sergei M. Dolotov, Valeryi F. Traven,* Vladimir V. Chernyshev, and Jaume Veciana*

Figure S1. Scheme of the preparation method of bilayer (BL) thin films #1-3. PC=polycarbonate, CTA=cellulose triacetate, and CAP=cellulose acetate propionate.

An additional BL film (film #4), which contained copolymer of polycarbonate and siloxane as a polymeric support, was additionally prepared using this method. This BL film was only characterized by X-ray diffraction data (Fig S2b).

k

Figure S2a. X ray diffraction patterns of BL film #1 (black line), BL film #2 (blue line), and BL film #3 (green line). The film samples with dimensions $2x3 \text{ cm}^2$ were attached to a glass support and X-ray diffraction data were recorded on a Rigaku "Rotaflex" RU-200B diffractometer in reflection mode with monochromatic CuK α radiation ($\lambda = 1.540598$ Å). The generator was activated at 50 kV and 80 mA

Figure S2b. X-ray patterns of BL thin films with conductive layer crystal of (TTF)I_{0.71+d} crystals on different polymeric substrates: polycarbonate (1) (replica of BL film #1), cellulose triacetate (2) (replica of BL film #2) and copolymer of polycarbonate and siloxane (3) (BL film #4). Data were collected in reflection mode using a Panalytical EMPYREAN instrument with a linear X'celerator detector using non-monochromated CuK_{α} radiation

Figure S3. Photograph of $TTF_{11}I_8$ (left) and $(TTF)I_3$ (right) crystals obtained using oxidation of TTF with iodine (see experimental part of the article). Dimension of cells: $1 \times 1 \text{ mm}^2$

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is O The Royal Society of Chemistry 2013

Figure S4. Temperature dependences of normalized electrical resistance of the BL film #1 (black line), film #2 (blue line), and film #3 (green line).

Figure S5. Electrical resistance response of the BL film #2 (CTA polymeric matrix) to perform cyclic elastic elongations using a maximum strain of $\varepsilon_{max} = 0.5\%$.

Figure S6. Electrical resistance response of BL film #3 (CAP polymeric matrix) to perform cyclic elastic elongation using a maximum of $\varepsilon_{max} = 0.5\%$.

Table S1. Distances between iodine species extracted from the resolved crystal structure of $TTF_{11}I_8$, as well as the values of the bond length in I-I and (I-I-I)⁻ added for comparison.

Number of I	Object1	Object2	Length, Å
1	I8	I3	4.883(5)
2	I4	I3	4.900(6)
3	I7	I4	4.892(6)
4	I1	I5	4.928(5)
5	I5	I6	4.864(6)
6	I6	I2	4.875(6)
I-I			$2.68-2.72^{1}$
I ₃			2,79-3,11 ²

Table S2. The central $C^1=C^4$ and C^4-S^4 bond length extracted from the resolved crystal structure of TTF₁₁I₈, the charge transfer of each molecule of TTF in asymmetric unit was calculated from Ref 3 using following equation r=0.762+0.049q, where r is ratio between bond lengths as it show in the table and q is a charge of TTF species.

Molecule	A. 1	A. 2	Laurath Å	$(\mathbf{r}, \mathbf{c}^1, \mathbf{c}^4) \mathbf{r}, (\mathbf{c}^4, \mathbf{c}^4)$	1
TIF	Atom1	Atom2	Length, A	ratio, r=($L(C = C)/L(C - S)$)	charge, q
	S4	C4	1.723		
А	C1	C4	1.372	0,796	0,700
	S4	C4	1.722		
В	C1	C4	1.393	0,809	0,958
	S4	C4	1.712		
С	C1	C4	1.372	0,801	0,804
	S4	C4	1.722		
D	C1	C4	1.393	0,809	0,958
	S4	C4	1.732		
Е	C1	C4	1.382	0,798	0,733
	S4	C4	1.722		
F	C1	C4	1.373	0,797	0,721
	S4	C4	1.722		
G	C1	C4	1.383	0,803	0,840
	S4	C4	1.722		
Н	C1	C4	1.393	0,809	0,958
	S4	C4	1.712		
Ι	C1	C4	1.382	0,807	0,923
	S4	C4	1.712		
J	C1	C4	1.392	0,813	1,043
	C1	C4	1.414		
K	S1	C4	1.713	0,825	1,295
	S4	C4	1.722		
L	C1	C4	1.394	0,810	0,970

References

- 1. U. Buontempo et al., J. Chem. Phys. 107 (1997), 5720.
- 2. Atkins et al Inorganic Chemistry 5th ed.(2010) Oxford University Press. p.431.
- 3. T.C.Umland et al., J. Phys. Chem. 92 (1986), 6456.