Supplementary Information

Manipulating the ambipolar characteristics of pentacene-based field-effect transistors

Liang-Yun Chiu,^a Horng-Long Cheng,*^a Hsin-Yuan Wan,^a Wei-Yang Chou^a and Fu-Ching Tang^b

 ^a Department of Photonics, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan
^b Department of Physics, National Cheng Kung University, Tainan 701, Taiwan

Corresponding Author

*E-mail: <u>shlcheng@mail.ncku.edu.tw</u>

1. Surface properties of gate dielectrics

			Surface energy		Surface	
Gate	Thickness	$\gamma^{d a}$	γ ^{pa}	γ	roughness	R ₁₂
dielectric or buffer	(nm)	(mJ/m²)	(mJ/m ²)	(mJ/m²)	(Å)	(mJ/m²)
SiO ₂	400	23.0	32.6	55.6	17.0	21.66
PVDF	42	30.4	15.7	46.1	19.1	6.16
PVNP	49	40.9	9.0	49.9	3.4	2.03
<i>h</i> -PMMA	426	33.3	8.1	41.4	2.7	1.80
PS	55	42.3	0.3	42.6	4.9	1.17
<i>t</i> -PMMA	188	33.7	6.1	39.7	3.8	0.95
d-PMMA	52	35.6	5.8	41.4	5.4	0.72
<i>ls</i> -PMMA	113	36.2	5.6	41.8	3.8	0.65
hs -PMMA	44	36.3	4.4	40.7	6.7	0.31
s-PMMA	63	36.8	3.7	40.5	4.0	0.14

Table S1. Properties of polymer buffer layers on silicon dioxide (SiO_2) gate dielectric and the corresponding interfacial tension (R_{12})

 a γ^d and γ^p denoted as the dispersion and polar force components of surface free energy, respectively.

Fig. S1 AFM images (2 μ m x 2 μ m) of SiO₂ and various polymer buffer layers. The root-mean-square roughness is also shown.

2. XRD and AFM analysis of other pentacene films

Fig. S2 XRD pattern of the pentacene films (thickness of ca. 60 nm) on various surfacemodified dielectrics. Note: the full width at half maximum (FWHM) of the (001) diffraction peak was also indicated. Inset: AFM images (5 μ m x 5 μ m) of the pentacene films with a thickness of ca. 10 nm.

3. Electrical characteristics of pentacene FETs and its complementary-like inverter

Fig. S3 (a) *p*-Channel and *n*-channel electrical characteristics of pentacene FETs with *s*-PMMA surface-modified gate dielectrics. Left panel: output characteristics; Right panel: transfer characteristics. I_D : drain current, V_D : source-to-drain bias, V_G : gate bias, and V_G ': effective gate bias. (b) Transfer characteristics of complementary-like inverters based on two identical ambipolar pentacene FETs with *s*-PMMA surface modification. Depending on the polarity of the supply voltage V_{DD} , the inverter works in the first or the third quadrant. Top left and right (dashed lines): the corresponding signal gains. Inset bottom right: Schematic circuit configuration of a complementary-like inverter.

4. Raman spectra

Fig. S4 Raman spectra ($\lambda_{exc} = 633$ nm) of the pentacene films (thickness of ca. 10 nm) grown on various dielectric surfaces. The spectra were normalized to the intensity of the 1371 cm⁻¹ band. The intensities of all spectra in left panel were enlarged ten times. The Gaussian/Lorentzian functions used for the deconvolution are presented by a thin solid line. The thick solid lines represent the overall fit, while the open cycles to the experimental data. The dashed lines serve as guidelines. Full width at half maximum (*fwhm*) of the selected bands are also shown.