Electronic Supplementary Information

for

Suppression of Energy Dissipation and Enhancement of Breakdown Strength in Ferroelectric Polymer-Graphene Percolative Composites

Kuo Han,^{*a,#*} Qi Li,^{*a,b,#*} Zongyi Chen,^{*b*} Matthew R. Gadinski,^{*a*} Lijie Dong,^{*b*} Chuanxin Xiong,^{*b*} and Qing Wang^{*a*}

^{*a*} Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA

^b State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China

[#] These authors contributed equally to this work.

Fig.S1 TEM image of GO@SiO₂.

Fig.S2 TGA trace of SiO₂, r-GO@SiO₂ and r-GO.

Tab.S1 Atomic ratio of C, O, and Si elements in r-GO@SiO₂.

Fig.S3 XRD profiles of pure PVDF-CTFE, 1.49 vol.% r-GO@SiO₂ and 3.19 vol.% r-GO@SiO₂.

Fig.S4 SEM images of the fracture surface of the r-GO@SiO₂/P(VDF-CTFE) composite film. Scale bar: left: 200 nm, right: 100 nm.

Fig.S5 Dependence of electrical conductivity of r-GO/P(VDF-CTFE) films on frequency.

Fig.S6 Dependence of (a) imaginary part, (b) real part of dielectric permittivity and (c) loss tangent of r-GO/P(VDF-CTFE) on frequency. (d) Linear fitting of imaginary part of dielectric permittivity as a function of frequency, showing a slope very close to -1.

Fig.S7 Dependence of loss tangent of r-GO/P(VDF-CTFE) films on frequency.

Fig.S8 Dependence of permittivity of r-GO/P(VDF-CTFE) composites on (a) the frequency and (b) the r-GO content at 1 KHz.