Electronic Supplementary Information

Low-Temperature MoO₃ Film from a Facile Synthetic Route for an Efficient Anode Interfacial Layer in Organic Optoelectronic Devices

Jun Liu, Xinkai Wu, Sujie Chen, Xingdong Shi, Jing Wang, Saijun Huang, Xiaojun Guo and Gufeng He* National Engineering Lab for TFT-LCD Materials and Technologies, and Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China. Fax: +86 21 34204371; Tel: +86 21 34207045; E-mail: <u>gufenghe@sjtu.edu.cn</u>

1. X-ray Photoemission Spectroscopy (XPS) spectra of sMoO₃ prepared under different conditions

We have used KLA-TENCOR XP-200 Profiler to measure the thicknesses of $sMoO_3$ films prepared from 2, 10 and 20 mg ml⁻¹ solutions. The thickness of $sMoO_3$ film from 20 mg ml⁻¹ solution is about 10 nm, which is almost identical to the height of nanoplate measured by AFM as shown in Figure 2. However, the thickness of $sMoO_3$ films from 2 and 10 mg ml⁻¹ are too thin to be determined precisely, due to the discontinuous nature of film prepared from the diluted solution. To further elucidate the surface morphology of $sMoO_3$, we use XPS to measure the surface electronic property of $sMoO_3$ prepared under different conditions on the ITO substrate. As shown in Figure S1, ITO and $sMoO_3$ from 2 mg ml⁻¹ solution have almost overlapping characteristic peaks of In 3p, In 3d and Sn 3d in the full XPS spectra, indicating discontinuous $sMoO_3$ film on ITO. This is consistent with the discrete nanoplate image of $sMoO_3$ from 2 mg ml⁻¹, as shown in Fig. 2(b). $sMoO_3$ from 10 mg ml⁻¹ solution shows remarkably reduced intensity of In 3p, In 3d and Sn 3d, meaning a certain thick $sMoO_3$ film covering the ITO substrate. Since the detected depth of XPS is about 5 nm, and the characteristic peaks of ITO still exist in $sMoO_3$ film from 10 mg ml⁻¹ solution, the thickness of such $sMoO_3$ film is less than 5 nm. For the $sMoO_3$ from 20 mg ml⁻¹ solution, no characteristic peaks of ITO are found in XPS spectrum, referring that the ITO substrate is completely covered by the $sMoO_3$ film.

Fig. S1 XPS spectra of sMoO₃ prepared under different conditions on ITO substrate.

2. Optical transparency of sMoO₃

Fig. S2 shows the optical transmission of PEDOT:PSS (9000 rpm) with 10 nm thickness and sMoO₃ (about 10 nm thickness) from 20 mg ml⁻¹ solution. At the wavelength larger than 350 nm, the optical transmission of sMoO₃ is larger than that of PEDOT:PSS. The optical transmission of sMoO₃ is nearly 100% in the visible light region, indicating ultra high transparency of sMoO₃ film with 10 nm.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2013

Fig. S2 Optical transparency of sMoO₃ and PEDOT:PSS with the almost same thickness.

3. UPS Spectra of sMoO₃.

Fig. S3 UPS spectra of sMoO₃, PEDOT:PSS and ITO, including (a) the full UPS spectrum using He I radiation, and (b) secondary-electron cutoff.