Supporting Information

Novel Programmable Functional Polyimides: Preparation, Demonstrating Mechanism of CT Induced Memory, and Ambipolar Electrochromic Behavior

By Chih-Jung Chen,⁺ Hung-Ju Yen,⁺ Yi-Cheng Hu, and Guey-Sheng Liou* Functional Polymeric Materials Laboratory, Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan

Tel: +886-2-336-5315; Fax: +886-2-336-5237; E-mail: <u>gsliou@ntu.edu.tw</u> [+] The authors contributed equally to this work

List of Contents for Supplementary Material:

Table S1. Inherent Viscosities and Molecular Weights of polyimides	. <u>SI-2</u>
Table S2. Solubility Behavior	. <u>SI-3</u>
Table S3. Thermal Properties of 9Ph- Series Polyimides	. <u>SI-4</u>
Figure S1. ¹ H NMR spectra of polyimide 9Ph-6FDA in DMSO- d_6	<u></u>
Figure S2. IR spectrum of polyimide 9Ph-DSPI film	<u> SI-6</u>
Figure S3. TGA thermograms of 9Ph- series polyimides	<u>SI-7</u>
Figure S4. UV-visable absorption spectra of 9Ph- series polyimides	<u>SI-8</u>
Figure S5. Current-voltage characteristics of the ITO/polyimide/Al memory device. (a	ι)
3Ph-ODPI (b) 3Ph-6FPI (c) 3Ph-DSPI (d) 3Ph-PMPI (e) 3Ph-NPPI	<u>. SI-9</u>
Figure S6. Calculated molecular orbitals and corresponding energy levels of the basic	units
for 3Ph-6FPI , 6Ph-6FPI , and 9Ph-6FPI	. <u>SI-10</u>
Figure S7. Energy levels of polyimides from gaussian simulation	. <u>SI-11</u>
Figure S8. Calculation of optical switching time at the applied potential and current-ti	me
curves of polyimide 9Ph-PMPI thin film	. <u>SI-12</u>
Figure S9. Absorbance change of polyimide 9Ph-PMPI thin film on the ITO-coated g	glass
substrate with a cycle time of 30 s monitored at the given wavelength	. <u>SI-13</u>
Figure S10. Potential step transmittance change of a single-layer flexible ITO-coated	PEN
EC device, using polyimide 9Ph-PMPI as active layer	. <u>SI-14</u>

		2	U	2	
polymer	$\eta_{inh}{}^{a)}$ (dL/g)	$M_{ m w}^{ m ~c)}$	$M_{\rm n}^{\rm c)}$	PDI ^{d)}	DP ^{e)}
9Ph-ODPI	0.27	135,400	56,600	2.38	48
9Ph-6FPI	0.43	161,800	83,500	1.94	64
9Ph-DSPI	0.31	148,300	69,700	2.13	57
9Ph-PMPI	0.30 ^{b)}	135,400	67,901	1.99	63

Table S1. Inherent Viscosity and Molecular Weights of Polyimides

^{a)} Measured at a polymer concentration of 0.5 g/dL in DMAc at 30 °C.
^{b)} Measured at a polymer concentration of 0.5 g/dL in H₂SO₄ at 30 °C.
^{c)} Calibrated with polystyrene standards, using NMP as the eluent at a constant flow rate of 0.5 mL/min at 40 °C.

^{d)} Polydispersity Index (M_w/M_n) . ^{e)} Degree of Polymerization.

	Solubility in various Solvent ^{a)}							
Code	NMP	DMAc	DMF	DMSO	<i>m</i> -Cresol	THF	CHCl ₃	
9Ph-ODPI	++	+	+-	+-	+	+	++	
9Ph-6FPI	++	++	+	+-	+	++	++	
9Ph-DSPI	++	++	+	+-	++	++	++	
9Ph-PMPI	+-	+-	+-	+-	+-	+-	+ -	

Table S2. Solubility Behavior

^{a)} The solubility was determined with a 10 mg sample in 1 mL of a solvent. ++, soluble at room temperature; +, soluble on heating at 70°C-80°C; +-, partially soluble or swelling; -, insoluble even on heating.

Table S3. Thermal Properties of 9Ph- Series Polyimides

Polymer ^{a)}	T_{-} [°C] ^{b)}	$T_{\rm d}^{5} [^{\rm o}C]^{\rm c}$		$T_{\rm d}^{10} [^{\rm o}{\rm C}]^{\rm c}$		R_{mean} [%] ^{d)}	LOI ^{e)}
rorymer	ig[0]	N_2	Air	N_2	Air	- 11,800 [/ 0]	201
9Ph-ODPI	241	455	435	485	485	63	43
9Ph-6FPI	252	455	455	500	495	59	41
9Ph-DSPI	247	455	450	505	485	61	42
9Ph-PMPI	265	460	460	495	495	66	44

^{a)} The polymer film samples were heated at 300 °C for 1 h prior to all the thermal analyses.

^{b)} Midpoint temperature of baseline shift on the second DSC heating trace (rate: 20 °C /min) of the sample after quenching from 400 °C to 50 °C (rate: 200 °C /min) in nitrogen. ^{c)} Temperature at which 5 % and 10% weight loss occurred, respectively, recorded by TGA at a heating rate of 20 °C/min and a gas flow rate of 20 cm³/min. ^{d)} Residual weight percentages at 800 °C under nitrogen flow. ^{e)} LOI = Limiting Oxygen Index = 17.5+0.4 R_{w800}

Figure S1. ¹H NMR spectrum of polyimide **9Ph-6FDA** in DMSO- d_6 .

Figure S2. IR spectrum of polyimide 9Ph-DSPI film.

Figure S3. TGA thermograms of 9Ph- series polyimides.

Figure S4. UV-visable absorption spectra of 9Ph- series polyimides.

Figure S5. Current-voltage (I-V) characteristics of the ITO/polyimide $(50 \pm 3 \text{ nm})/\text{Al}$ memory devices. (a) **3Ph-ODPI** (b) **3Ph-6FPI** (c) **3Ph-DSPI** (d) **3Ph-PMPI** (e) **3Ph-NPPI**.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2013

Figure S6. Calculated molecular orbitals and corresponding energy levels of the basic units for **3Ph-6FPI**, **6Ph-6FPI**, and **9Ph-6FPI**.

Polymer	НОМО	LUMO	$E_{\rm g}({\rm eV})$
	(eV)	(eV)	-
3Ph-ODPI	5.02	2.48	2.54
3Ph-6FPI	5.08	2.66	2.42
3Ph-DSPI	5.15	3.02	2.13
3Ph-PMPI	5.22	3.21	2.01
3Ph-NPPI	5.12	3.41 🔻	1.71
5Ph-ODPI	4.48	2.48	2.00
5Ph-6FPI	4.51	2.57	1.94
5Ph-DSPI	4.57	2.97	1.60
5Ph-PMPI	4.54	3.14	1.40
5Ph-NPPI	4.53	3.36 🗸	1.17
9Ph-ODPI	4.15	2.44	1.71
9Ph-6FPI	4.16	2.64	1.52
9Ph-DSPI	4.22	2.98	1.24
9Ph-PMPI	4.22	3.15 🗸	1.07

Figure S7. Energy levels of polyimides from gaussian simulation.

Figure S8. Calculation of optical switching time at (a) 1100 nm, (b) 1010 nm at the applied potential, and (c) current-time curves of polyimide **9Ph-PMPI** thin film (130±10 nm in thickness) on the ITO-coated glass substrate.

Figure S9. Absorbance change between (a) 0 and 0.60 V and (b) 0 and 0.90 V (vs. Ag/AgCl) of polyimide **9Ph-PMPI** thin film (130 \pm 10 nm in thickness) on the ITO-coated glass substrate (coated area: 1.2 cm × 0.5 cm) in 0.1 M TBAP/CH₃CN with a cycle time of 30 s monitored at the given wavelength.

Figure S10. Potential step transmittance change at 1^{st} and 2^{nd} oxidized states for (a) continuous 10 cycling test and (b) 1 switching cycle of a single-layer flexible ITO-coated PEN EC device, using polyimide **9Ph-PMPI** (130±10 nm in thickness) as active layer with a cycle time of 10 hour and 10 min for coloring and bleaching processes, respectively.