Supporting information for

Impact of 2,6-connectivity in Azulene: Optical Properties and Stimuli Responsive Behavior

Michael Koch, Olivier Blacque and Koushik Venkatesan*

Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057

Zurich, Switzerland.

venkates an. koushik@aci.uzh.ch

Table of contents

Experimental Section	S2
Materials and instruments	S2
Theoretical Methods	S2
Synthesis 1,3-disubstituted azulenes	S2
Synthesis 1,2-disubstituted azulenes	S3
Synthesis 2,6-disubstituted azulenes	S4
Synthesis 4,7 disubstituted azulenes	S6
NMR-Spectra	S7
Energies and cartesian coordinates of the DFT optimized ground-state	S17
Excitation energies and oscillator strengths from the ground-state structures (S_0) of $1 - 4$ and $1-H^+ - 4-H^+$	S25
Excitation energies and oscillator strengths from the excited-state structures (S_1) of $1-H^+ - 4-H^+$	S26
Excitation energies and oscillator strengths from the excited-state structures (S ₂) of 1 - 4	S26
Frontier orbitals of the ground-state of 1 - 4	S30
Frontier orbitals of the ground-state of $1-H^+ - 4-H^+$	S34
TD-DFT UV-Vis spectra	S38
UV-Vis spectra	S43
References	S49

Experimental Section

Materials and instruments

Unless otherwise stated, all other reagents used were purchased from commercial sources and used without further purification. All glassware used during the reaction was dried for at least 18 h at 160 °C. THF and Et₂O were dried over Na/ benzophenone; CH_2Cl_2 and NEt₃ were dried over CaH₂; DMF was dried over P₂O₅; toluene and pentane were machine dried. TMS-acetylene was dried over molecular sieve. ¹H- and ¹³C- NMR were recorded with Bruker 500 MHz and Varian 300 MHz. The chemical shifts (δ) were reported in parts per million (ppm) relative to tetramethylsilane (external standard) calibrated on residual solvent peaks.^{1, 2} Absorption spectra were recorded with Varian Cary UV500 Scan and Varian Cary 100 Bio; emission spectra were recorded with Varian Cary Eclipse Fluorescence Spectrometer. Column chromatography was conducted over silica gel (mesh 63–200 nm). If not indicated otherwise all reactions were performed under N₂-atmosphere.

Theoretical Methods

All calculations were performed with the Gaussian 09 program package³ using the hybrid functional PBE1PBE⁴ in conjunction with the cc-pVDZ basis set.⁵ Full geometry optimizations without symmetry constraints, were carried out in the gas phase for the singlet ground states (S_0). The optimized geometries were confirmed to be potential energy minima by vibrational frequency calculations at the same level of theory, as no imaginary frequency was found. The first twenty singlet-singlet transition energies were computed at the optimized S_0 geometries by using the time-dependent DFT (TD-DFT) methodology.⁶⁻⁸ Solvent effects were taken into account using the conductor-like polarizable continuum model (CPCM)^{9,10} with dichloromethane as solvent for the TD-DFT calculations on all optimized gas-phase geometries. The excited state structures were optimized by TD-DFT calculations, and the first four electronic transitions were computed taking into account the state-specific equilibrium solvation of each excited state at its equilibrium geometry.

Synthesis 1,3-disubstituted azulenes

1,3- Diiodo-azulene (**6**).¹¹ To azulene (256.9 mg, 2 mmol) dissolved in dry CH_2Cl_2 (60 mL), N-Iodosuccinimide (900 mg, 4 mmol) was added and the reaction mixture was stirred for 3 h at room temperature. Consequently the reaction mixture was concentrated under reduced pressure. The crude product was subjected to flash column chromatography using hexane as the eluent to obtain **6** as a blue powder. Yield: 98%, 744 mg, 1.96 mmol. ¹H NMR (500 MHz, CDCl₃, 25 °C): δ (ppm) = 8.18 (d, ³J_(H-H) = 9.7 Hz, 2H, 4-, 8-H), 8.01 (s, 1H, 2-H), 7.69 (t, ³J_(H-H) = 9.9 Hz, 1H, 6-H), 7.32 (t, ³J_(H-H) = 9.9 Hz, 2H, 5-, 7-H). ¹³C{¹H} NMR (125.8 MHz, CDCl₃, 25 °C): δ (ppm) = 149.5 (s), 140.8 (s), 139.4 (s), 138.9 (s), 125.1 (s), 74.8 (s, C-I).

1,3- Diphenylethynyl-azulene (1).¹² To **6** (348 mg, 0.916 mmol) dissolved in dry toluene (20 mL), dry THF (20 mL) and dry NEt₃ (20 mL), CuI (17 mg, 0.09 mmol), PPh₃ (13 mg, 0.05 mmol), phenyl acetylene (357 mg, 3.5 mmol) and Pd(PPh₃)₂Cl₂ (32 mg, 0.046 mmol) were added. The reaction mixture was heated at 65 °C for 12 h. After, the mixture was poured into water (200 mL) and extracted with toluene (3 × 70 mL). The combined organic phases were dried over MgSO₄, filtered and consequently concentrated *in vacuo*. The crude product was subjected to column

chromatography using 20 % CH₂Cl₂ in hexane as the eluent to obtain **1** as a green powder. Yield: 90%, ¹³ 273 mg, 0.831 mmol. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 8.64 (d, ³J_(H-H) = 11.8 Hz, 2H, 4-, 8-H), 8.13 (s, 1H, 2-H), 7.75 (t, ³J_(H-H) = 9.8 Hz, 1H, 6-H), 7.64 (d, ³J_(H-H) = 6.9 Hz, 4H, o-Ar-H), 7.43-7.36 (m, 2H, 5-, 7-H & m-, p-Ar-H). ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 142.5 (s), 141.7 (s), 140.9 (s), 137.8 (s), 131.9 (s), 129.0 (s), 128.6 (s), 126.5 (s), 124.4 (s), 111.1 (s), 94.6 (s, C=C), 85.3 (s, C=C); elemental analysis (%) calcd for C₂₆H₁₆: C, 95.09; H, 4.91. Found: C, 94.91; H, 5.08.

Synthesis 1,2-disubstituted azulenes

1-Iodo-2-phenylethynyl-azulene (**8**). 2-Phenylethynyl-azulene¹⁴ (7) (114 mg, 0.5 mmol) was dissolved in dry toluene (50 mL) at 10 °C. To this N-Iodosuccinimide (112 mg, 0.5 mmol) was added. The reaction mixture was stirred for 2.5 h, filtered through a pad of silica and consequently concentrated under reduced pressure to a volume of 30 mL. Due to instability of **8** in the solid state, this compound was further used in the next step without purification. ¹H NMR¹⁵ (300 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 8.26 (d, ³J_(H-H) = 9.8 Hz, 1H, 4-H), 8.19 (d, ³J_(H-H) = 9.6 Hz, 1H, 8-H), 7.73-7.69 (m, 2H, o-Ar-H), 7.64-7.57 (m, 2H, 6-H & p-Ar-H), 7.43-7.41 (m, 3H, 3-H & m-Ar-H), 7.36-7.22 (m, 2H, 5-, 7-H).

1,2- Diphenylethynyl-azulene (**2**). To the crude solution of 1-Iodo-2-phenylethynyl-azulene in toluene, dry NEt₃ (20 mL), PPh₃ (13 mg, 0.05 mmol), CuI (8 mg, 0.05 mmol), phenyl acetylene (153 mg, 1.5 mmol) and Pd(PPh₃)₂Cl₂ (17 mg, 0.025 mmol) were added. The reaction mixture was heated at 65 °C for 12 h. The mixture was poured into saturated NH₄Cl (100 mL) and then extracted with toluene (2 × 40 mL). The combined organic phases were dried over MgSO₄, filtered and consequently concentrated *in vacuo*. The crude product was subjected to column chromatography using 10 % ethyl acetate in hexane as the eluent to obtain **2** as a green powder. Yield: 91 %,¹⁶ 149 mg, 0.455 mmol. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 8.59 (d, ³J_(H-H) = 9.6 Hz, 1H, 4-H), 8.26 (d, ³J_(H-H) = 9.6 Hz, 1H, 8-H), 7.68-7.62 (m, 5H, 6-H & o-Ar-H), 7.46-7.31 (m, 9H, 3-, 5-H & m-, p-Ar-H), 7.27 (t, ³J_(H-H) = 9.6 Hz, 1H, 7-H). ¹³C {¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 141.8 (s), 141.5 (s), 139.7 (s), 138.0 (s), 136.9 (s), 132.9 (s), 132.4 (s), 131.8 (s), 129.5 (s), 129.1 (s), 129.0 (s), 128.5 (s), 126.4 (s), 125.9 (s), 124.7 (s), 123.8 (s), 120.6 (s), 113.7 (s), 99.5 (s, C=C), 97.3 (s, C=C), 87.1 (s, C=C), 85.1 (s, C=C); elemental analysis (%) calcd for C₂₆H₁₆: C, 95.09; H, 4.91. Found: C, 94.82; H, 5.15.

Synthesis 2,6-disubstituted azulenes

Diethyl 2-hydroxyazulene-1.3-dicarboxylate (9) was synthesized from α -tropolone according to literature.⁸ α -tropolone was synthesized starting from dicyclopentadiene based on literature.⁹

Diethyl 2-methoxyazulene-1.3-dicarboxylate (10). To 9 (839 mg, 2.91 mmol) dissolved in acetone (150 mL), K₂CO₃ (6 g, 43.4 mmol) and CH₃I (4 mL, 9 g, 64 mmol) were added. The reaction mixture was then refluxed for 48 h. Following this the mixture was allowed to cool down and then filtered through a Celite plug and then concentrated *in vacuo*. Separation via column chromatography using 10 % EtOAc in CH₂Cl₂ as the eluent afforded 10 as a bright red powder. Yield: 82%, 722 mg, 2.39 mmol. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 9.46 (d, ³*J*_(H-H) = 10.4 Hz, 2H, 4-, 8-H), 7.81 (t, ³*J*_(H-H) = 9.8 Hz, 1H, 6-H), 7.69 (t, ³*J*_(H-H) = 10.0 Hz, 2H, 5-, 7-H), 4.45 (q, ³*J*_(H-H) = 7.1 Hz, 4H, OCH₂), 4.13 (s, 3H, OCH₃), 1.45 (t, ³*J*_(H-H) = 7.1 Hz, 6H, CH₃). ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 171.0 (s), 165.1 (s), 142.5 (s), 138.5 (s), 136.9 (s), 131.4 (s), 108.3 (s), 63.4 (s), 60.7 (s), 14.8 (s); elemental analysis (%) calcd for C₁₇H₁₈O₅: C, 67.54; H, 6.00. Found: C, 67.77; H, 6.08.

Diethyl 6-bromo-2-methoxyazulene-1.3-dicarboxylate (11). Diethyl 2-methoxyazulene-1.3-dicarboxylate (500 mg, 1.65 mmol) and NaOAc (164 mg, 2 mmol) was dissolved in dry DMF (50 mL) in the dark and cooled to 10°C. Under vigorous stirring Br₂ (291 mg, 1.82 mmol) in DMF (5 mL) was added over 20 minutes. The reaction was stirred at room temperature over night. The reaction mixture was then poured into water (100 mL). After separation of the phases, the aqueous layer was extracted with chloroform CHCl₃ (2 x 50 mL). The combined organic layer were washed with saturated NaHCO₃-solution (150 mL) and water (100 mL) and then dried over MgSO₄. After evaporation of the solvent *in vacuo*, the product was purified by column chromatography. (Eluent: 20 % EtOAc in hexane). Recrystallization from ethylacetate gave orange powder. Yield: 85%, 536 mg, 1.41 mmol. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 9.50 (d, ³J_(H-H) = 10.4 Hz, 2H, 4-, 8-H), 7.71 (t, ³J_(H-H) = 10.1 Hz, 2H, 5-, 7-H), 4.49 (q, ³J_(H-H) = 7.1 Hz, 4H, OCH₂), 4.17 (s, 3H, OCH₃), 1.49 (t, ³J_(H-H) = 7.1 Hz, 6H, CH₃). ¹³C {¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 170.0 (s), 164.1 (s), 141.5(s), 137.5 (s), 130.4 (s), 117.2 (s), 107.3 (s), 62.4 (s), 59.7 (s), 13.8 (s); elemental analysis (%) calcd for C₁₇H₁₇BrO₅: C, 53.56; H, 4.49. Found: C, 53.29; H, 4.59.

Diethyl 2-methoxy-6-phenylethynyl-azulene-1.3-dicarboxylate (12). 11 (500 mg, 1.31 mmol) was dissolved in dry toluene (20 mL), dry THF (20 mL) and dry NEt₃ (20 mL). To this mixture, CuI (25 mg, 0.13 mmol), PPh₃ (13 mg, 0.05 mmol), phenyl acetylene (357 mg, 3.5 mmol) and Pd(PPh₃)₂Cl₂) (45 mg, 0.065 mmol) were added. The reaction

mixture was heated at 65 °C over night. The mixture was poured into water (200 mL) and then extracted with toluene (3 × 70 mL). The combined organic phases were dried over MgSO₄, filtered and consequently concentrated *in vacuo*. The crude product was subjected to column chromatography using 20 % EtOAc in CH₂Cl₂ as the eluent to obtain 1 as a red powder. Yield: 83 %, 438 mg, 1.09 mmol. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C): $\delta = 8.42$ (d, ³*J*_(H-H) = 9.9 Hz, 2 H, 4-, 8-H), 7.76-7.67 (m, 3H, Ar-H), 7.54-7.35 (m, 2H, Ar-H), 7.61 (s, 2H, 1-,3-H), 7.35 (t, ³*J*_(H-H) = 9.9 Hz, 2H, 5-, 7-H Az), 4.51 (q, ³*J*_(H-H) = 7.1 Hz, 4H, OCH₂), 4.18 (s, 3H, OCH₃), 1.50 (t, ³*J*_(H-H) = 7.1 Hz, 6H, CH₃). δ (ppm) = 170.0 (s), 164.1 (s), 141.5(s), 137.5 (s), 133.2 (s), 130.4 (s), 125.8 (s), 124.7 (s), 121.7 (s), 107.4 (s), 98.2 (s, C=C), 90.1 (s, C=C) 62.4 (s), 59.7 (s), 13.8 (s); elemental analysis (%) calcd for C₂₅H₂₂O₅: C, 74.61; H, 5.51. Found: C, 74.69; H, 5.42.

2-Hydroxy-6-phenylethynyl-azulene (13). 12 (350 mg, 0.87 mmol) was dissolved in a mixture of DMF (50 mL) and water (10 mL). LiCl (932 mg, 22 mmol) was added and the reaction mixture was refluxed at 160 °C for 21 hours. The reaction mixture was allowed to cool down, and then poured into ice water and extracted with diethylether (3 × 100 mL). The combined organic phases was washed with water (2 × 150 mL), filtered and subsequently dried over MgSO₄. After evaporation of the solvent *in vacuo*, the product was purified by short column chromatography. (Eluent: 20 % EtOAc in CH₂Cl₂). Violet-red powder was obtained which decomposes quickly and was therefore directly used for the following reaction without further purification. Crude yield: 56%, 119 mg, 0.49 mmol. ¹H NMR (300 MHz, d6-acetone, 25 °C): $\delta = 8.37$ (s, 1H, C-O*H*), 8.25 (d, 2H, ³*J*_(H-H) = 9.6 Hz, 4-, 8-H), 7.74-7.65 (m, 3H, Ar-H), 7.31 (t, ³*J*_(H-H) = 9.2 Hz, 2H, 5-,7-H), 7.56-7.43 (m, 2H, Ar-H), 7.11 (s, 2H, 1-,3-H).

2-Bromo-6-phenylethynyl-azulene (14). 13 (100 mg, 0.41 mmol) was dissolved in dry toluene (60 mL) and dry pyridine (2 ml). PBr₃ (114 mg, 0.42 mmol) was then added drop wise. The solution was heated to 90 °C for 1 h. It was then poured into ice water (200 mL). After allowing to phase separate, the aqueous phase was extracted with toluene (2 × 100 mL). The combined organic phases were washed with water (100 mL), dried over MgSO₄ and then concentrated *in vacuo*. Separation after column chromatography using 10% CH₂Cl₂ in hexane as the eluent afforded 14 as a blue-violet powder. Yield: 68%, 86 mg, 0.28 mmol. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C): $\delta = 8.40$ (d, ³*J*_(H-H) = 9.8 Hz, 2 H, 4-, 8-H), 7.74-7.66 (m, 3H, Ar-H), 7.52-7.33 (m, 2H, Ar-H), 7.59 (s, 2H, 1-, 3-H), 7.33 (t, ³*J*_(H-H) = 9.9 Hz, 2H, 5-, 7-H Az). ¹³C{¹H} NMR (125.8 MHz, CDCl₃, 25 °C): δ (ppm) = 141.8 (s), 139.3 (s), 138.1 (s), 133.2 (s), 131.8 (s), 130.0 (s), 125.7 (s), 124.8 (s), 121.9 (s), 119.2 (s), 97.0 (s, C=C), 89.2 (s, C=C); elemental analysis (%) calcd for C₁₈H₁₁Br: C, 70.38; H, 3.61. Found: C, 70.52; H, 3.69.

2,6-Diphenylethynyl-azulene (**3**). **14** (86 mg, 0.28 mmol) was dissolved in dry toluene (20 mL) and dry NEt₃ (20 mL). CuI (6 mg, 0.03 mmol), PPh₃ (13 mg, 0.05 mmol), phenyl acetylene (82 mg, 0.8 mmol) and Pd(PPh₃)₂Cl₂ (10 mg, 0.015 mmol) were added. The reaction mixture was heated at 65 °C over night. The mixture was poured into water (100 mL) and then extracted with toluene (2 × 50 mL). The combined organic phases were dried over MgSO₄, filtered and consequently concentrated *in vacuo*. The crude product was subjected to column chromatography using 20 % CH₂Cl₂ in hexane as the eluent to obtain **3** as a dark green powder. Yield: 96 %, 88 mg, 0.27 mmol. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 8.34 (d, ³J_(H-H) = 10.1 Hz, 2H, 4-, 8-H), 7.66 (m, 7H, Ar-H), 7.53 (s, 2H, 1-, 3-H) 7.44-7.22 (m, 3H, o-Ar-H), 7.29-7.25 (m, 2H, 5-,7-H & Ar-H). ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 140.3 (s), 137.9 (s), 136.8 (s), 131.7 (s), 131.6 (s), 129.8(s), 128.6 (s), 128.5 (s), 124.2 (s), 123.3 (s), 122.9 (s), 120.4 (s), 95.1 (s, C=C), 91.3 (s, C=C), 89.6 (s, C=C), 88.9 (s, C=C); elemental analysis (%) calcd for C₂₆H₁₆: C, 95.09; H, 4.91. Found: C, 95.28; H, 4.70.

Synthesis 4,7 disubstituted azulenes

4,7-Dibromoazulene (**15**).¹⁷ The blue-green powder was synthesized according to literature from 2,5-dibromo-S,S-dioxide and *N*,*N*-dimethylaminofulvene.¹H NMR (500 MHz, CD_2Cl_2 , 25 °C): δ (ppm) = 8.59 (s, 1H, 8-H), 7.97 (s, 1H, 2-H), 7.71 (d, ${}^{3}J_{(H-H)} = 11.3$ Hz, 1H, 6-H), 7.62 (s, 1H, 3-H), 7.45-7.39 (m, 2H, 1-, 5-H). ${}^{13}C{}^{1}H{}$ NMR (125.8 MHz, CD_2Cl_2 , 25 °C): δ (ppm) = 140.4 (s), 139.9 (s), 138.0 (s), 137.7 (s), 134.5 (s), 127.3 (s), 123.2 (s), 121.9 (s), 118.0 (s). The data is consistent with published results.¹⁷

4,7- Diphenylethynyl-azulene (4). 15 (71.6 mg, 0.25 mmol) was dissolved in dry toluene (10 mL) and dry NEt₃ (15 mL). PPh₃ (13 mg, 0.05 mmol), CuI (9.5 mg, 0.05 mmol), phenyl acetylene (102 mg, 1 mmol) and Pd(PPh₃)₂Cl₂ (18 mg, 0.025 mmol) were added. The reaction mixture was heated at 65 °C over night. The mixture was poured into water (100 mL) and then extracted with toluene (3 × 40 mL). The combined organic phases were dried over MgSO₄, filtered and consequently concentrated *in vacuo*. The crude product was subjected to column chromatography using 10% CH₂Cl₂ in hexane as the eluent to obtain 4 as a green powder. Yield: 93%, 77 mg, 0.234 mmol. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 8.59 (s, 1H, 8-H), 7.95 (t, ³J_(H-H) = 3.7 Hz, 1H, 2-H), 7.83-7.81 (m, 2H, Ar-H), 7.73-7.71 (m, 2H, Ar-H), 7.61 (d, ³J_(H-H) = 7.5 Hz, 2H, 6-H), 7.47-7.45 (m, 4H, 1-,3-H & Ar-H), 7.43-7.38 (m, 4H, 4-H & Ar-H). ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C): δ (ppm) = 140.2 (s), 139.5 (s), 139.4 (s), 138.7 (s), 132.6 (s), 132.1 (s), 130.7 (s), 130.0 (s), 129.2 (s), 129.1 (s), 129.0 (s), 126.4 (s), 123.8 (s), 123.1 (s), 121.8 (s), 120.9 (s), 118.3 (s), 97.8 (s, C=C), 93.7 (s, C=C), 91.3 (s, C=C), 90.0 (s, C=C); elemental analysis (%) calcd for C₂₆H₁₆: C, 95.09; H, 4.91. Found: C, 94.87; H, 4.72.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2013

Figure S1. 1 H NMR (500 MHz, CD₂Cl₂, 25 °C) of 1.

Figure S2. ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C) of **1**.

Figure S3. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C) of **2**.

Figure S4. ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C) of **2**.

Figure S5. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C) of **3**.

Figure S6. ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C) of **3**.

Figure S7. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C) of **4**.

Figure S8. ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C) of 4.

Figure S9. ¹H NMR (500 MHz, CDCl₃, 25 °C) of **6**.

Figure S10. ¹³C{¹H} NMR (125.8 MHz, CDCl₃, 25 °C) of 6.

Figure S11. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C) of **8**.

Figure S12. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C) of **10**.

Figure S13. ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C) of 10.

Figure S14. 1 H NMR (500 MHz, CD₂Cl₂, 25 °C) of 11.

Figure S15. ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C) of **11**.

Figure S16. ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C) of 14.

Figure S17. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C) of **14**.

Figure S18. ¹³C{¹H} NMR (125.8 MHz, CD₂Cl₂, 25 °C) of **15**.

Figure S19. ¹H NMR (500 MHz, CD₂Cl₂, 25 °C) of **15**.

Sum of electronic and thermal Enthalpies=

Sum of electronic and thermal Free Energies=

Energies and cartesian coordinates of the DFT optimized ground-state

Energies and cartesian coordinates of the DFT optimized ground-state structure of 1

С	-0.00030000	4.56120000	-0.00040000	С	-5.30940000	-2.48730000	0.00030000
С	1.26370000	3.96890000	-0.00040000	С	-6.06520000	-0.18590000	-0.00010000
С	1.58790000	2.61020000	-0.00030000	С	-6.63180000	-2.91550000	0.00040000
С	-1.26420000	3.96870000	-0.00030000	Н	-4.49250000	-3.21030000	0.00050000
С	0.73670000	1.51420000	-0.00010000	С	-7.38430000	-0.62380000	0.00000000
С	-1.58820000	2.60990000	-0.00010000	Н	-5.83700000	0.88110000	-0.00030000
С	-0.73680000	1.51400000	0.0000000	С	-7.67430000	-1.98840000	0.00020000
Н	-0.00040000	5.65560000	-0.00050000	Н	-6.85150000	-3.98510000	0.00060000
Н	2.11140000	4.65860000	-0.00050000	Н	-8.19520000	0.10750000	-0.00020000
Н	2.65460000	2.36340000	-0.00030000	Н	-8.71150000	-2.32900000	0.00020000
Н	-2.11200000	4.65820000	-0.00030000	С	5.00670000	-1.11250000	0.00010000
Н	-2.65490000	2.36300000	0.00000000	С	6.06570000	-0.18580000	0.00160000
С	1.15450000	0.15380000	0.00000000	С	5.30920000	-2.48690000	-0.00150000
Η	0.00030000	-1.74000000	0.00030000	С	7.38470000	-0.62410000	0.00160000
С	0.00020000	-0.65130000	0.00010000	Н	5.83780000	0.88130000	0.00290000
С	-1.15440000	0.15360000	0.00000000	С	6.63150000	-2.91550000	-0.00150000
С	2.49210000	-0.29320000	0.00010000	Н	4.49200000	-3.20980000	-0.00270000
С	3.65540000	-0.66800000	0.00010000	С	7.67430000	-1.98870000	0.00010000
С	-2.49180000	-0.29370000	0.00000000	Н	8.19580000	0.10700000	0.00280000
С	-3.65510000	-0.66870000	0.00000000	Н	6.85090000	-3.98520000	-0.00270000
С	-5.00650000	-1.11290000	0.00010000	Н	8.71140000	-2.32960000	0.00010000
Zer	o-point correct	tion=			0.330587 (Hartree/Partic	le)
The	rmal correction	n to Energy=		0.3	51273		
The	rmal correction	n to Enthalpy=		0.3	52218		
The	rmal correction	n to Gibbs Free	e Energy=	0.27614	14		
Sum	of electronic	and zero-point	t Energies=	-99	8.825560		
Sum	of electronic	and thermal En	nergies=	-99	8.804874		

-998.803930

-998.880004

Energies and cartesian coordinates of the DFT optimized ground-state structure of 2

С	6.00290000	-0.95920000	-0.00680000	С	-1.71150000	3.33430000	0.26290000
С	5.57590000	-2.29030000	0.00230000	С	0.39790000	4.43420000	-0.19280000
С	4.27410000	-2.78730000	0.01050000	С	-2.34650000	4.57050000	0.27920000
С	5.25320000	0.21760000	-0.01100000	Н	-2.27580000	2.41730000	0.43950000
С	3.06810000	-2.08640000	0.00950000	С	-0.24590000	5.66600000	-0.17360000
С	3.86480000	0.36710000	-0.00850000	Н	1.47130000	4.37410000	-0.37910000
С	2.88320000	-0.61660000	-0.00180000	С	-1.61900000	5.74100000	0.06130000
Н	7.08820000	-0.81990000	-0.01070000	Н	-3.42130000	4.62200000	0.46590000
Н	6.36970000	-3.04150000	0.00430000	Н	0.33000000	6.57790000	-0.34470000
Н	4.17770000	-3.87780000	0.01900000	Н	-2.12140000	6.71020000	0.07550000
Н	5.82880000	1.14650000	-0.01690000	С	-3.19240000	-2.15030000	-0.02780000
Н	3.48630000	1.39430000	-0.01230000	С	-3.76560000	-3.42260000	0.15090000
С	1.79310000	-2.66460000	0.01780000	С	-4.03740000	-1.04330000	-0.22830000
Н	1.57640000	-3.73060000	0.02440000	С	-5.14670000	-3.57820000	0.13160000
С	0.82760000	-1.64060000	0.01010000	Н	-3.11190000	-4.28210000	0.30600000
С	1.48960000	-0.37310000	0.00020000	С	-5.41720000	-1.20910000	-0.24760000
С	-0.56970000	-1.82480000	0.00470000	Н	-3.59270000	-0.05760000	-0.37290000
С	-1.78070000	-1.98140000	-0.00770000	С	-5.97670000	-2.47450000	-0.06710000
С	0.86550000	0.88760000	0.00100000	Н	-5.58040000	-4.57030000	0.27260000
С	0.32340000	1.98330000	0.00850000	Н	-6.06310000	-0.34310000	-0.40560000
С	-0.32670000	3.24770000	0.02530000	Н	-7.06110000	-2.60080000	-0.08210000
Zer	o-point corred	ction=			0.330562	(Hartree/Parti	cle)
The	rmal correctio	on to Energy=		Ο.	351216		,
The	rmal correctio	on to Enthalpy=	=	Ο.	352160		
The	rmal correctio	on to Gibbs Fre	ee Energy=	Ο.	276277		
Sum	of electronic	c and zero-poin	nt Energies=	-9	98.824484		
Sum	of electronic	c and thermal H	Energies=	-998.8038	329		
Sum	of electronic	c and thermal H	Enthalpies=	-998.8028	385		
Sum of electronic and thermal Free Energies=				-998.8787	768		

Energies and cartesian coordinates of the DFT optimized ground-state structure of 3

С	-2.57980000	0.00030000	0.00000000	Н	6.88160000	2.15280000	0.00010000
С	-1.95870000	1.26860000	0.00000000	С	8.82320000	-1.20720000	0.0000000
С	-0.60730000	1.58660000	-0.00010000	Н	6.88140000	-2.15320000	-0.00010000
С	-1.95870000	-1.26810000	0.00000000	С	9.52320000	-0.00030000	0.00010000
С	0.50610000	0.74390000	-0.00010000	Н	9.36660000	2.15380000	0.00020000
С	-0.60730000	-1.58600000	0.00000000	Н	9.36640000	-2.15440000	0.0000000
С	0.50610000	-0.74320000	0.0000000	Н	10.61500000	-0.00040000	0.00020000
Н	-2.64860000	2.11490000	0.0000000	Н	2.19620000	-2.18110000	-0.00010000
Н	-0.37850000	2.65730000	0.0000000	С	-4.00410000	0.00030000	0.0000000
Н	-2.64850000	-2.11440000	0.0000000	С	-5.22530000	-0.00020000	0.0000000
Н	-0.37850000	-2.65670000	0.0000000	С	-6.64780000	-0.00020000	0.0000000
С	1.84090000	1.15330000	0.00010000	С	-7.36150000	-1.21260000	0.00010000
Н	2.19620000	2.18170000	0.00020000	С	-7.36160000	1.21210000	0.0000000
С	2.66300000	0.00030000	-0.00010000	С	-8.75140000	-1.20750000	0.00010000
С	1.84090000	-1.15270000	0.00000000	Н	-6.81010000	-2.15390000	0.00010000
С	4.07460000	0.00030000	-0.00010000	С	-8.75140000	1.20700000	0.00000000
С	5.29630000	-0.00010000	-0.00010000	Н	-6.81020000	2.15340000	-0.00010000
С	6.71840000	-0.00020000	0.00000000	С	-9.45070000	-0.00030000	0.00010000
С	7.43340000	1.21170000	0.00010000	Н	-9.29480000	-2.15440000	0.00020000
С	7.43330000	-1.21210000	-0.00010000	Н	-9.29490000	2.15390000	-0.00010000
С	8.82330000	1.20660000	0.00010000	Н	-10.54250000	-0.00030000	0.00010000

Zero-point correction=	=	0.330024	(Hartree/Particle)
Thermal correction to	Energy=	0.350725	
Thermal correction to	Enthalpy=	0.351669	
Thermal correction to	Gibbs Free Energy=	0.275854	
Sum of electronic and	zero-point Energies=	-998.819409	
Sum of electronic and	thermal Energies=	-998.798708	
Sum of electronic and	thermal Enthalpies=	-998.797764	
Sum of electronic and	thermal Free Energies=	-998.873580	

Energies and cartesian coordinates of the DFT optimized ground-state structure of 4

С	-0.83740000	-0.78190000	-0.00010000	С	5.72770000	-2.24130000	0
С	-1.74820000	0.29590000	0.0000000	С	6.41130000	0.08540000	0
С	-1.41370000	1.66450000	0.00010000	С	7.06270000	-2.62790000	0
С	0.54810000	-0.80240000	-0.00030000	Н	4.93310000	-2.98870000	-0
С	-0.16620000	2.26480000	0.0000000	С	7.74340000	-0.31070000	0
С	1.47980000	0.25970000	-0.00030000	Н	6.14750000	1.14400000	0
С	1.18470000	1.63530000	-0.00020000	С	8.07360000	-1.66630000	0
Η	-1.30990000	-1.76740000	-0.00020000	Н	7.31770000	-3.68950000	0
Η	-2.26500000	2.35150000	0.0000000	Н	8.53170000	0.44450000	0
Η	0.99800000	-1.79720000	-0.00030000	Н	9.12110000	-1.97410000	0
С	0.04160000	3.65950000	-0.00030000	С	-5.70600000	-0.64710000	0
Η	-0.75060000	4.40630000	-0.00060000	С	-6.11490000	-1.99340000	0
С	1.41790000	3.90140000	0.00010000	С	-6.68720000	0.36120000	0
Η	1.88360000	4.88720000	0.00020000	С	-7.46660000	-2.31680000	0
С	2.11580000	2.67980000	0.00010000	Н	-5.35710000	-2.77830000	-0
Η	3.19550000	2.55110000	0.00020000	С	-8.03670000	0.02800000	0
С	2.85150000	-0.12290000	-0.00020000	Н	-6.37430000	1.40640000	0
С	4.02050000	-0.47450000	-0.00010000	С	-8.43230000	-1.30990000	0
С	-3.13490000	-0.03090000	0.0000000	Н	-7.77030000	-3.36560000	-0
С	-4.32290000	-0.31310000	0.0000000	Н	-8.78790000	0.82040000	0
С	5.38520000	-0.87690000	0.0000000	Н	-9.49310000	-1.56780000	0
Zer	o-point corre	ction=			0.329875	(Hartree/Parti	cle)
		. —		0	0 - 0		

Thermal correction to	Energy=	0.350556
Thermal correction to	Enthalpy=	0.351501
Thermal correction to	Gibbs Free Energy=	0.276038
Sum of electronic and	zero-point Energies=	-998.813803
Sum of electronic and	thermal Energies=	-998.793122
Sum of electronic and	thermal Enthalpies=	-998.792178
Sum of electronic and	thermal Free Energies=	-998.867641

0.0000000

0.00010000

0.00010000 -0.00010000

0.00020000 0.00010000

0.00020000

0.00010000

0.00020000

0.00020000

0.00010000

0.00000000

0.00020000

0.00000000

0.00020000

0.00020000

0.00010000 -0.00010000

0.00030000

0.00010000

Energies and cartesian coordinates of the DFT optimized ground-state structure of 1-H⁺

С	0.14580000	4.46850000	0.76820000	С	4.77900000	-1.71570000	1.28060000
С	-1.08760000	3.80080000	0.83120000	С	7.02150000	-1.74920000	-0.38510000
С	-1.41940000	2.53290000	0.37810000	Н	5.77560000	-0.75670000	-1.84250000
С	1.34630000	4.03050000	0.22310000	С	5.96890000	-2.27970000	1.72560000
С	-0.59040000	1.60340000	-0.26790000	Н	3.89780000	-1.70120000	1.92370000
С	1.62780000	2.81280000	-0.41220000	С	7.09030000	-2.29710000	0.89590000
С	0.76820000	1.75260000	-0.63840000	Н	7.89800000	-1.76490000	-1.03500000
Н	0.16230000	5.46790000	1.21060000	Н	6.02220000	-2.71050000	2.72690000
Н	-1.89690000	4.35680000	1.31210000	Н	8.02250000	-2.74170000	1.24910000
Н	-2.44870000	2.20030000	0.54200000	С	-4.80240000	-1.10130000	-0.00810000
Н	2.18440000	4.72870000	0.29500000	С	-5.78580000	-0.27860000	0.57010000
Н	2.65490000	2.67210000	-0.76270000	С	-5.12410000	-2.42390000	-0.36380000
С	-1.04710000	0.27190000	-0.67010000	С	-7.06530000	-0.77360000	0.78630000
Н	-0.03850000	-1.38870000	-1.67280000	Н	-5.53710000	0.74750000	0.84530000
С	-0.00960000	-0.37500000	-1.27600000	С	-6.40700000	-2.90820000	-0.14190000
С	1.20540000	0.49480000	-1.36210000	Н	-4.36020000	-3.06040000	-0.81220000
С	-2.35450000	-0.20440000	-0.43980000	С	-7.37780000	-2.08660000	0.43190000
С	-3.48950000	-0.60590000	-0.23430000	Н	-7.82580000	-0.13210000	1.23460000
С	2.44400000	-0.09000000	-0.86520000	Н	-6.65260000	-3.93470000	-0.41880000
С	3.48520000	-0.58140000	-0.47220000	Н	-8.38450000	-2.47180000	0.60400000
С	4.70400000	-1.16140000	-0.00840000	Н	1.35360000	0.77340000	-2.42980000
С	5.83640000	-1.18340000	-0.84030000				

Zero-point correction= 0.342658 (Hartree/Particle) Thermal correction to Energy= 0.363712 Thermal correction to Enthalpy= 0.364656 0.287256 Thermal correction to Gibbs Free Energy= Sum of electronic and zero-point Energies= -999.164956 Sum of electronic and thermal Energies= -999.143902 Sum of electronic and thermal Enthalpies= -999.142958 Sum of electronic and thermal Free Energies= -999.220358

Energies and cartesian coordinates of the DFT optimized ground-state structure of $2-H^+$

С	5.88260000	-1.31480000	0.00080000	С	0.79250000	4.38890000	-0.37020000
С	5.38550000	-2.60390000	0.01590000	С	-1.84030000	4.85970000	0.43800000
С	4.04190000	-3.03130000	0.02960000	Н	-1.97870000	2.72480000	0.73490000
С	5.17120000	-0.09520000	-0.00390000	С	0.29020000	5.68400000	-0.35570000
С	2.89880000	-2.25970000	0.02520000	Н	1.81850000	4.19760000	-0.68810000
С	3.80890000	0.12040000	0.00020000	С	-1.02410000	5.92220000	0.04770000
С	2.77320000	-0.83960000	0.00960000	Н	-2.86710000	5.04750000	0.75610000
Н	6.97160000	-1.22300000	-0.00670000	Н	0.92760000	6.51520000	-0.66150000
Η	6.13070000	-3.40360000	0.01890000	Н	-1.41430000	6.94150000	0.05860000
Η	3.88970000	-4.11440000	0.04470000	С	-3.39840000	-1.93590000	-0.03310000
Η	5.79110000	0.80530000	-0.01170000	С	-4.02550000	-3.19720000	0.03780000
Η	3.47160000	1.16080000	-0.00330000	С	-4.18420000	-0.76900000	-0.13440000
С	1.52180000	-2.84780000	0.03920000	С	-5.40980000	-3.28220000	0.01000000
Η	1.35960000	-3.47530000	0.93290000	Н	-3.41330000	-4.09660000	0.11530000
С	0.61570000	-1.65700000	0.02320000	С	-5.56740000	-0.86860000	-0.16330000
С	1.37710000	-0.48610000	0.01070000	Н	-3.69170000	0.20250000	-0.19410000
С	-0.76710000	-1.74320000	0.01360000	С	-6.18060000	-2.12160000	-0.09040000
С	-1.99110000	-1.83890000	-0.00600000	Н	-5.89520000	-4.25780000	0.06590000
С	0.89120000	0.83370000	0.00580000	Н	-6.17580000	0.03350000	-0.24370000
С	0.47760000	1.98340000	0.00870000	Н	-7.26950000	-2.19440000	-0.11290000
С	-0.02490000	3.31280000	0.02010000	Н	1.35140000	-3.50420000	-0.83170000
С	-1.34920000	3.56040000	0.42530000				
Zero	Zero-point correction=				0.342833 (Hartree/Partic	1e)
							,

	-			
Ther	mal	L correction	n to	Energy=
Ther	mal	L correction	n to	Enthalpy=
Ther	mal	L correction	n to	Gibbs Free Energy=
Sum	of	electronic	and	zero-point Energies=
Sum	of	electronic	and	thermal Energies=
Sum	of	electronic	and	thermal Enthalpies=
Sum	of	electronic	and	thermal Free Energies=

0.342833	(Hartree/Particle)
0.363850	
0.364794	
0.288030	
-999.192117	
-999.171099	
-999.170155	
-999.246919	

Energies and cartesian coordinates of the DFT optimized ground-state structure of $3-H^+$

2.62650000 1.97190000	0.05510000	0.0000000	С	-8 82970000	1 15320000	0 00040000
1.97190000	1 0100000			0.02070000	1.10020000	0.00010000
	-1.21880000	-0.00060000	Н	-6.89730000	2.11570000	0.0000000
0.63580000	-1.52660000	-0.00080000	С	-9.51450000	-0.06390000	0.00070000
1.99310000	1.30980000	0.00050000	Н	-9.35130000	-2.21830000	0.00090000
-0.48370000	-0.65370000	-0.00040000	Н	-9.38430000	2.09270000	0.00040000
0.63130000	1.61820000	0.00060000	Н	-10.60610000	-0.07220000	0.00090000
-0.46270000	0.76590000	0.00020000	Н	-2.10280000	1.87100000	0.88310000
2.65500000	-2.07120000	-0.00090000	С	4.03470000	0.03500000	0.00000000
0.39630000	-2.59350000	-0.00120000	С	5.25920000	0.00630000	-0.00010000
2.67080000	2.16610000	0.00090000	С	6.67320000	-0.02420000	-0.00020000
0.39980000	2.68750000	0.00110000	С	7.40740000	1.17880000	-0.00030000
-1.83990000	-1.09870000	-0.00060000	С	7.35400000	-1.25820000	-0.00010000
-2.14950000	-2.14250000	-0.00110000	С	8.79450000	1.14140000	-0.00040000
-2.69270000	-0.01590000	-0.00020000	Н	6.87640000	2.13160000	-0.00030000
-1.88120000	1.24670000	0.00040000	С	8.74140000	-1.28160000	-0.00030000
-4.08520000	-0.03730000	-0.00020000	Н	6.78190000	-2.18690000	0.0000000
-5.31130000	-0.03340000	0.0000000	С	9.46190000	-0.08530000	-0.00040000
-6.72490000	-0.04260000	0.00020000	Н	9.36240000	2.07300000	-0.00060000
-7.42350000	-1.26680000	0.00040000	Н	9.26790000	-2.23710000	-0.00020000
-7.44220000	1.17070000	0.00020000	Н	10.55320000	-0.10920000	-0.00050000
-8.81110000	-1.27030000	0.00070000	Н	-2.10270000	1.87180000	-0.88180000
-6.86370000	-2.20290000	0.00040000				
	$\begin{array}{c} 1.97130000\\ 0.63580000\\ 1.99310000\\ -0.48370000\\ 0.63130000\\ -0.46270000\\ 2.65500000\\ 0.39630000\\ 2.67080000\\ 0.39980000\\ -1.83990000\\ -2.14950000\\ -2.14950000\\ -2.14950000\\ -2.69270000\\ -1.88120000\\ -4.08520000\\ -5.31130000\\ -6.72490000\\ -7.42350000\\ -7.44220000\\ -8.81110000\\ -6.86370000\\ \end{array}$	1.97190000-1.21800000.63580000-1.526600001.993100001.30980000-0.48370000-0.653700000.631300001.61820000-0.462700000.765900002.65500000-2.071200000.39630000-2.593500002.670800002.166100000.39980000-2.68750000-1.83990000-1.09870000-2.14950000-2.14250000-2.69270000-0.01590000-1.881200001.24670000-5.31130000-0.03340000-6.72490000-1.26680000-7.442200001.17070000-8.81110000-2.20290000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.97190000-1.21800000-0.00080000H0.63580000-1.52660000-0.00080000C1.993100001.309800000.00050000H-0.48370000-0.65370000-0.00040000H0.631300001.618200000.00020000H-0.462700000.765900000.00020000H2.65500000-2.07120000-0.00120000C0.39630000-2.59350000-0.00120000C2.670800002.166100000.00090000C0.399800002.68750000-0.00110000C-1.83990000-1.09870000-0.00110000C-2.14950000-2.14250000-0.00110000C-2.69270000-0.01590000-0.00020000H-1.881200001.246700000.00020000H-5.31130000-0.033400000.00020000H-7.42350000-1.266800000.00020000H-7.442200001.170700000.00020000H-8.81110000-1.270300000.00070000H-6.86370000-2.202900000.00040000H	1.97190000-1.21800000-0.00080000C-9.514500000.635800001.309800000.00050000H-9.35130000-0.48370000-0.65370000-0.00040000H-9.384300000.631300001.618200000.00020000H-10.60610000-0.462700000.765900000.00020000H-2.102800002.65500000-2.07120000-0.00120000C4.034700000.39630000-2.59350000-0.00120000C5.259200002.670800002.166100000.00100000C7.40740000-1.83990000-1.09870000-0.00110000C7.3540000-2.14950000-2.14250000-0.0020000H6.87640000-1.881200001.246700000.00020000H6.78190000-4.08520000-0.033400000.00020000H9.36240000-5.31130000-0.03400000.00020000H9.36240000-7.42350000-1.266800000.00020000H9.26790000-7.442200001.170700000.00020000H9.26790000-7.4225000-2.202900000.00070000H9.210270000-7.42200001.270300000.00070000H-2.10270000-7.4220000-1.270300000.00070000H-2.10270000-7.4220000-2.202900000.00040000H-2.10270000	1.9719000-1.21880000-0.00080000R-6.89730000-2.113700000.63580000-1.52660000-0.00080000C-9.51450000-0.063900001.993100001.309800000.00050000H-9.384300002.092700000.631300001.618200000.00060000H-10.60610000-0.07220000-0.462700000.765900000.00020000H-2.102800001.871000002.65500000-2.07120000-0.00120000C4.034700000.035000002.670800002.166100000.00090000C5.259200000.006300002.687500002.166100000.00110000C7.407400001.17880000-1.83990000-1.09870000-0.00110000C8.79450000-1.25820000-2.14950000-2.14250000-0.00020000H6.876400002.13160000-1.881200001.246700000.00020000H6.7819000-2.18690000-5.31130000-0.033400000.00020000H9.362400002.0730000-7.42350000-1.26680000.00020000H9.26790000-2.23710000-7.442200001.17070000.00020000H9.26790000-2.23710000-7.44220000-1.27030000.00020000H9.26790000-2.23710000-7.42350000-2.20290000.00040000H9.26790000-2.23710000-7.4220000-2.20290000.00040000H9.26790000-2.23710000-7.4220000-1.27030000.00070000H </td

Zero-point correction=	0.342449	(Hartree/Particle)
Thermal correction to Energy=	0.363469	
Thermal correction to Enthalpy=	0.364413	
Thermal correction to Gibbs Free Energy=	0.288274	
Sum of electronic and zero-point Energies=	-999.193703	
Sum of electronic and thermal Energies=	-999.172684	
Sum of electronic and thermal Enthalpies=	-999.171740	
Sum of electronic and thermal Free Energies=	-999.247879	

Energies and cartesian coordinates of the DFT optimized ground-state structure of $4-H^+$ (config. A)

С	-0.83920000	-0.82030000	-0.00070000	С	6.40370000	0.06390000	0.00070000
С	-1.75780000	0.26300000	0.00000000	С	7.01650000	-2.66640000	0.00020000
С	-1.40480000	1.63000000	0.00020000	Н	4.88450000	-3.00330000	-0.00040000
С	0.53920000	-0.82720000	-0.00100000	С	7.72810000	-0.34980000	0.00090000
С	-0.14590000	2.20100000	0.00000000	Н	6.15480000	1.12600000	0.00080000
С	1.48200000	0.23490000	-0.00080000	С	8.03590000	-1.71200000	0.00070000
С	1.14940000	1.61190000	-0.00050000	Н	7.26240000	-3.72940000	0.00010000
Н	-1.30710000	-1.80710000	-0.00090000	Н	8.52840000	0.39170000	0.00130000
Н	-2.24740000	2.32630000	0.00060000	Н	9.07930000	-2.03250000	0.00090000
Н	0.99330000	-1.82070000	-0.00140000	С	-5.69580000	-0.66850000	0.00010000
С	0.03280000	3.69440000	0.00020000	С	-6.09880000	-2.01910000	-0.00030000
Н	-0.44710000	4.15730000	0.88150000	С	-6.66880000	0.35110000	0.00070000
С	1.50710000	3.87660000	-0.00020000	С	-7.44950000	-2.33670000	-0.00020000
Η	1.99630000	4.85060000	-0.00020000	Н	-5.34220000	-2.80480000	-0.00080000
С	2.13120000	2.67790000	-0.00050000	С	-8.01630000	0.01980000	0.00080000
Η	3.20510000	2.50310000	-0.00080000	Н	-6.35250000	1.39500000	0.00100000
С	2.84180000	-0.12980000	-0.00110000	С	-8.40760000	-1.32080000	0.00040000
С	4.01560000	-0.48110000	-0.00020000	Н	-7.76100000	-3.38240000	-0.00050000
С	-3.12880000	-0.05550000	0.00030000	Н	-8.76920000	0.80940000	0.00130000
С	-4.32060000	-0.33910000	0.00000000	Н	-9.46890000	-1.57600000	0.00050000
С	5.36900000	-0.89280000	0.00010000	Н	-0.44780000	4.15780000	-0.88050000
С	5.68800000	-2.26560000	0.00000000				

Zero-point correction=	0.342184	(Hartree/Particle)
Thermal correction to Energy=	0.363204	
Thermal correction to Enthalpy=	0.364148	
Thermal correction to Gibbs Free Energy=	0.288092	
Sum of electronic and zero-point Energies=	-999.188447	
Sum of electronic and thermal Energies=	-999.167427	
Sum of electronic and thermal Enthalpies=	-999.166483	
Sum of electronic and thermal Free Energies=	-999.242539	

Energies and cartesian coordinates of the DFT optimized ground-state structure of $4-H^+$ (config. B)

С	0.86449700	-0.80844700	-0.00055800	Н	-4.87953500	-3.01708400	-0.00021000
С	1.77444000	0.29648000	-0.00032800	С	-7.70407600	-0.34277300	0.00047400
С	1.41442600	1.65003600	-0.00007000	Н	-6.11903600	1.12095100	0.00032100
С	-0.50507300	-0.83516100	-0.00054400	С	-8.02151600	-1.70268000	0.00041900
С	0.13516100	2.21478500	-0.00002000	Н	-7.26284600	-3.72553100	0.00013100
С	-1.46088600	0.23039100	-0.00035300	Н	-8.49898900	0.40453100	0.00066300
С	-1.14448400	1.59216900	-0.00023200	Н	-9.06725100	-2.01574500	0.00057000
Н	1.35032100	-1.78661900	-0.00075500	С	5.71071000	-0.64486700	-0.00000800
Н	2.24651900	2.35773100	0.00009500	С	6.10662000	-1.99743600	-0.00012300
Н	-0.95226200	-1.83171200	-0.00070600	С	6.68856800	0.37003100	0.00033400
С	-0.07318400	3.65515100	0.00016900	С	7.45566800	-2.32188100	0.00010700
С	-1.39458600	3.92791700	0.00002300	Н	5.34622800	-2.77942200	-0.00039400
Н	-1.84201200	4.92172800	-0.00002200	С	8.03436100	0.03199200	0.00056300
С	-2.18569300	2.66802400	-0.00009300	Н	6.37714400	1.41539000	0.00041600
С	-2.81961800	-0.14729800	-0.00029000	С	8.41877800	-1.31056600	0.00044900
С	-3.99309800	-0.49785400	-0.00015700	Н	7.76210800	-3.36901700	0.00001700
С	3.14677500	-0.02003600	-0.00035800	Н	8.79128400	0.81774700	0.00082700
С	4.33687400	-0.30945300	-0.00022600	Н	9.47883200	-1.57118900	0.00063000
С	-5.34918000	-0.90327500	0.0003600	Н	0.73960900	4.38075900	0.00033700
С	-5.67752800	-2.27351500	-0.00001800	Н	-2.85194700	2.58392600	-0.87802800
С	-6.37658200	0.06094700	0.00028400	Н	-2.85151900	2.58376800	0.87818800
С	-7.00914900	-2.66438300	0.00017400				

Zero-point correction=	0.342170 (Hartree/Particle)
Thermal correction to Energy=	0.363164
Thermal correction to Enthalpy=	0.364108
Thermal correction to Gibbs Free Energ	y= 0.288481
Sum of electronic and zero-point Energ	ies= -999.188250
Sum of electronic and thermal Energies	= -999.167256
Sum of electronic and thermal Enthalpi	es= -999.166311
Sum of electronic and thermal Free Ene	rgies= -999.241939

Figure S20. 4-H⁺ (config. A) vs. 4-H⁺ (config. B)

Energies and cartesian coordinates of the TD-DFT optimized singlet excited-state S2 of 1

С	0.00010000	4.51720000	-0.00020000	С	-1.15160000	0.06370000	0.0000000
С	-1.26620000	3.92490000	-0.00010000	Н	0.0000000	-1.83140000	0.00010000
С	-1.58820000	2.54990000	-0.00010000	С	0.0000000	-0.74280000	0.0000000
С	1.26640000	3.92480000	-0.00010000	С	1.15160000	0.06370000	0.0000000
С	-0.72230000	1.46330000	0.0000000	С	-2.47240000	-0.36440000	0.0000000
С	1.58830000	2.54980000	-0.00010000	С	-3.65730000	-0.70390000	0.0000000
С	0.72230000	1.46330000	0.0000000	С	2.47240000	-0.36450000	0.0000000
Н	0.00010000	5.61180000	-0.00020000	С	3.65730000	-0.70410000	0.0000000
Н	-2.11670000	4.61090000	-0.00020000	С	5.00860000	-1.10480000	0.00010000
Н	-2.65290000	2.29830000	-0.00010000	С	5.35570000	-2.47500000	0.00010000
Н	2.11690000	4.61080000	-0.00020000	С	6.04450000	-0.14290000	0.0000000
Н	2.65300000	2.29820000	-0.00010000	С	6.68840000	-2.86030000	0.00010000

Н	4.56060000	-3.22180000	0.00010000	С	-5.35570000	-2.47490000	0.00010000
С	7.37300000	-0.54230000	0.00000000	С	-7.37300000	-0.54230000	0.00000000
Н	5.78310000	0.91630000	0.00000000	Н	-5.78320000	0.91640000	0.0000000
С	7.70340000	-1.89990000	0.00010000	С	-6.68830000	-2.86030000	0.00010000
Н	6.94230000	-3.92230000	0.00010000	Н	-4.56050000	-3.22170000	0.00010000
Н	8.16270000	0.21170000	0.00000000	С	-7.70340000	-1.89990000	0.00010000
Н	8.75030000	-2.20910000	0.00010000	Н	-8.16280000	0.21170000	0.00000000
С	-5.00860000	-1.10470000	0.00000000	Н	-6.94220000	-3.92220000	0.00010000
С	-6.04450000	-0.14290000	0.00000000	Н	-8.75030000	-2.20920000	0.00010000
Ene	rgies and carte	esian coordina	tes of the TD-DI	T optimiz	ed singlet ex	cited-state S2	of 2
С	6.02300000	-0.97520000	-0.00770000	С	-1.74650000	3.31890000	-0.02520000
С	5.58540000	-2.31130000	-0.00100000	С	0.40680000	4.44070000	-0.01960000
С	4.28040000	-2.79700000	0.00340000	С	-2.38260000	4.55250000	-0.03120000
С	5.27430000	0.21300000	-0.01190000	Н	-2.32580000	2.39430000	-0.02550000
С	3.07320000	-2.05970000	0.00210000	С	-0.24090000	5.66810000	-0.02560000
С	3.88930000	0.38000000	-0.01050000	Н	1.49650000	4.38860000	-0.01500000
С	2.89560000	-0.61910000	-0.00420000	С	-1.63640000	5.73310000	-0.03140000
Н	7.10860000	-0.84140000	-0.01000000	Н	-3.47380000	4.59680000	-0.03580000
Н	6.37460000	-3.06750000	0.00120000	Н	0.34800000	6.58770000	-0.02570000
Н	4.16440000	-3.88460000	0.00840000	Н	-2.14080000	6.70120000	-0.03610000
Н	5.86060000	1.13570000	-0.01710000	С	-3.18610000	-2.14680000	0.02070000
Н	3.51780000	1.40820000	-0.01470000	С	-3.76400000	-3.43910000	0.02600000
С	1.79220000	-2.65260000	0.00710000	С	-4.03970000	-1.01700000	0.02230000
Н	1.58280000	-3.72060000	0.01250000	С	-5.14190000	-3.58750000	0.03270000
С	0.80880000	-1.63030000	0.00430000	Н	-3.10830000	-4.31090000	0.02470000
С	1.48880000	-0.35770000	-0.00300000	С	-5.41580000	-1.18100000	0.02910000
C	-0 56800000	-1 82200000	0 00910000	ц	-3 59400000	-0 02140000	0 01860000

С	1.48880000	-0.35770000	-0.00300000	С	-5.41580000	-1.18100000	0.02910000
С	-0.56800000	-1.82200000	0.00910000	Н	-3.59400000	-0.02140000	0.01860000
С	-1.79100000	-1.98170000	0.01420000	С	-5.97370000	-2.46310000	0.03430000
С	0.86730000	0.88760000	-0.00820000	Н	-5.57800000	-4.58830000	0.03680000
С	0.31290000	1.98570000	-0.01320000	Н	-6.06530000	-0.30350000	0.03040000
С	-0.33620000	3.23950000	-0.01930000	Н	-7.05840000	-2.58660000	0.03960000

Energies and cartesian coordinates of the TD-DFT optimized singlet excited-state S2 of 3

С	-2.58580000	0.0000000	0.0000000	Н	6.87340000	2.15910000	0.00010000
C	-1.95540000	1.28720000	0.00000000	C	8.81240000	-1.21090000	0.00010000
C	-0.61900000	1.60430000	0.00000000	Н	6.87350000	-2.15920000	0.00000000
C	-1.95550000	-1.28720000	0.00000000	C	9.51220000	0.00000000	0.00010000
C	0.50790000	0.73250000	0.00000000	H	9.35850000	2.15630000	0.00010000
C	-0.61910000	-1.60430000	-0.00010000	Н	9.35860000	-2.15620000	0.00010000
С	0.50780000	-0.73260000	-0.00010000	Н	10.60400000	0.0000000	0.00010000
Н	-2.65350000	2.12720000	0.00000000	Н	2.18300000	-2.18810000	-0.00010000
Н	-0.37940000	2.67180000	0.00000000	С	-3.98770000	0.0000000	0.0000000
Н	-2.65360000	-2.12710000	0.00000000	С	-5.21990000	0.00010000	0.00000000
Н	-0.37950000	-2.67190000	-0.00010000	С	-6.62780000	0.00000000	0.00000000
С	1.83430000	1.15720000	-0.00010000	С	-7.35020000	-1.21650000	0.00000000
Н	2.18310000	2.18800000	-0.00010000	С	-7.35030000	1.21650000	0.00000000
С	2.67560000	-0.00010000	0.00000000	С	-8.73710000	-1.20890000	0.00010000
С	1.83420000	-1.15730000	-0.00010000	Н	-6.79910000	-2.15810000	0.00000000
С	4.06620000	-0.00010000	0.00000000	С	-8.73720000	1.20880000	0.00010000
С	5.30090000	-0.00010000	0.0000000	Н	-6.79920000	2.15810000	0.0000000
С	6.70470000	-0.00010000	0.00000000	С	-9.43890000	0.00000000	0.00010000
С	7.42660000	1.21890000	0.00010000	Н	-9.28150000	-2.15550000	0.00010000
С	7.42670000	-1.21900000	0.00000000	Н	-9.28160000	2.15550000	0.00010000
С	8.81230000	1.21090000	0.00010000	Н	-10.53060000	-0.00010000	0.00010000

Energ	gies	and	cartes	ian	coordinates	of	the	TD-DFT	optimized	l si	Inglet	e	xcited	-state	S2	of	4
С	-0.8	35200	000	-0.7	7940000	0.00	0000	000	С	0.0	685000	00	3.6	5807000	0	0	.000

С	-0.85200000	-0.77940000	0.00000000	С	0.06850000	3.68070000	0.00010000
С	-1.76490000	0.31740000	0.00000000	Н	-0.71650000	4.43490000	0.00020000
С	-1.42070000	1.69400000	0.00000000	С	1.45450000	3.91570000	0.00000000
С	0.53100000	-0.81330000	0.00000000	Н	1.93170000	4.89530000	-0.00010000
С	-0.15440000	2.27630000	0.00000000	С	2.13070000	2.68220000	0.00000000
С	1.48090000	0.24970000	0.00010000	Н	3.20800000	2.53460000	0.00000000
С	1.17570000	1.64320000	0.00000000	С	2.83570000	-0.12430000	0.00000000
Η	-1.33700000	-1.75860000	0.00000000	С	4.01520000	-0.47300000	0.0000000
Н	-2.26420000	2.38810000	0.00000000	С	-3.13200000	-0.01460000	0.00000000
Н	0.97470000	-1.81080000	0.0000000	С	-4.32710000	-0.30860000	0.00000000

С	5.36800000	-0.87310000	0.0000000	С	-5.69510000	-0.64930000	0.0000000
С	5.71320000	-2.24380000	0.0000000	С	-6.10070000	-2.00420000	0.0000000
С	6.40380000	0.08870000	0.00000000	С	-6.69070000	0.35540000	0.0000000
С	7.04550000	-2.63040000	0.0000000	С	-7.44810000	-2.33340000	0.0000000
Н	4.91730000	-2.99000000	0.00010000	Н	-5.33800000	-2.78440000	0.0000000
С	7.73190000	-0.31150000	0.00000000	С	-8.03450000	0.01170000	0.0000000
Н	6.14330000	1.14810000	0.00000000	Н	-6.38470000	1.40270000	0.0000000
С	8.06060000	-1.66990000	0.0000000	С	-8.42250000	-1.33120000	0.0000000
Н	7.29920000	-3.69240000	0.00000000	Н	-7.74630000	-3.38390000	0.0000000
Н	8.52250000	0.44140000	0.00000000	Н	-8.79200000	0.79830000	0.0000000
Η	9.10740000	-1.97980000	0.0000000	Н	-9.48160000	-1.59600000	0.0000000
Ene	rgies and cart	esian coordina	tes of the TD-DI	FT optimi	.zed singlet ex	cited-state S1	l of 1-H⁺
	5			-	2		
С	0.14780000	4.72860000	0.95730000	С	4.55990000	-1.18220000	1.35230000
С	-0.96180000	3.96030000	1.16390000	С	6.12490000	-2.79050000	-0.33310000
С	-1.26410000	2.65330000	0.62200000	Н	4.89820000	-2.05850000	-1.94940000
С	1.31380000	4.46920000	0.16880000	С	5.58660000	-1.94130000	1.88410000
С	-0.48670000	1.90710000	-0.20720000	Н	3.94130000	-0.54990000	1.98970000
С	1.58900000	3.32940000	-0.57730000	С	6.37070000	-2.74520000	1.04590000
С	0.81600000	2.19050000	-0.75600000	Н	6.74210000	-3.41910000	-0.97630000
Н	0.15240000	5.69350000	1.47250000	Н	5.78740000	-1.91380000	2.95590000
Η	-1.72820000	4.38040000	1.81780000	Н	7.18080000	-3.34100000	1.47060000
Η	-2.22490000	2.22530000	0.91400000	С	-4.41910000	-1.24710000	-0.04270000
Η	2.07080000	5.25320000	0.15970000	С	-5.47520000	-0.56630000	0.61150000
Н	2.55120000	3.33260000	-1.10040000	С	-4.60570000	-2.58540000	-0.46930000
С	-0.88290000	0.57310000	-0.73610000	С	-6.67960000	-1.21110000	0.82880000
Η	0.05240000	-0.86950000	-2.08360000	Н	-5.32580000	0.46400000	0.93550000
С	0.08470000	0.08230000	-1.55630000	С	-5.81600000	-3.21690000	-0.24570000
С	1.26170000	1.02210000	-1.61870000	Н	-3.78800000	-3.10250000	-0.97220000
С	-2.11060000	-0.05710000	-0.48200000	С	-6.85330000	-2.53390000	0.40210000
С	-3.19190000	-0.60210000	-0.27250000	Н	-7.49480000	-0.68900000	1.33150000
С	2.37840000	0.25760000	-1.06700000	Н	-5.96280000	-4.24660000	-0.57410000
С	3.26060000	-0.44580000	-0.58950000	Н	-7.80630000	-3.03710000	0.57570000
С	4.30240000	-1.22010000	-0.04020000	Н	1.49260000	1.32310000	-2.65700000
С	5.10110000	-2.03680000	-0.87820000				

Energies and cartesian coordinates of the TD-DFT optimized singlet excited-state S1 of 2-H⁺

С	5.86850000	-1.29670000	-0.02580000	С	0.93770000	4.43350000	-0.01580000
С	5.33010000	-2.64330000	-0.01940000	С	-1.82230000	4.95010000	-0.00400000
С	4.01430000	-3.01850000	-0.01230000	Н	-2.08890000	2.80880000	0.00200000
С	5.21450000	-0.10920000	-0.02590000	С	0.48210000	5.73870000	-0.01650000
С	2.85140000	-2.21440000	-0.00920000	Н	2.00530000	4.21310000	-0.02040000
С	3.78800000	0.14410000	-0.01970000	С	-0.89420000	5.99980000	-0.01060000
С	2.79320000	-0.79070000	-0.01260000	Н	-2.89090000	5.16840000	0.00060000
Η	6.96040000	-1.24160000	-0.03130000	Н	1.19370000	6.56520000	-0.02170000
Η	6.06860000	-3.44620000	-0.02060000	Н	-1.24760000	7.03260000	-0.01120000
Η	3.83100000	-4.09840000	-0.00850000	С	-3.43470000	-1.96820000	0.02050000
Η	5.84020000	0.78660000	-0.03140000	С	-3.99130000	-3.26730000	0.02850000
Η	3.48710000	1.19220000	-0.02090000	С	-4.28930000	-0.84320000	0.02050000
С	1.46630000	-2.79030000	-0.00130000	С	-5.36770000	-3.42860000	0.03650000
Η	1.26030000	-3.42050000	0.88320000	Н	-3.32740000	-4.13250000	0.02850000
С	0.57070000	-1.58620000	-0.00020000	С	-5.66340000	-1.01890000	0.02840000
С	1.34310000	-0.42870000	-0.00670000	Н	-3.85350000	0.15640000	0.01420000
С	-0.81480000	-1.66440000	0.00660000	С	-6.20410000	-2.30850000	0.03650000
С	-2.03680000	-1.80190000	0.01290000	Н	-5.79730000	-4.43140000	0.04280000
С	0.86120000	0.87070000	-0.00760000	Н	-6.32420000	-0.15070000	0.02840000
С	0.46260000	2.03860000	-0.00840000	Н	-7.28760000	-2.44140000	0.04270000
С	0.00820000	3.36160000	-0.00910000	Н	1.25200000	-3.42510000	-0.88040000
С	-1.38290000	3.63950000	-0.00320000				

Energies	and	cartesian	coordinates	of	the	TD-DFT	optimized	singlet	excited-state	S1	of	3-н+	

~	0 5050000			~	0 5050000	0 000000	0 00010000
С	-2.58580000	0.00000000	0.00000000	C	0.50/80000	-0./3260000	-0.00010000
С	-1.95540000	1.28720000	0.00000000	Н	-2.65350000	2.12720000	0.0000000
С	-0.61900000	1.60430000	0.00000000	Н	-0.37940000	2.67180000	0.0000000
С	-1.95550000	-1.28720000	0.00000000	Н	-2.65360000	-2.12710000	0.0000000
С	0.50790000	0.73250000	0.00000000	Н	-0.37950000	-2.67190000	-0.00010000
С	-0.61910000	-1.60430000	-0.00010000	С	1.83430000	1.15720000	-0.00010000

4.00245400

-3.12292300

-4.32077000

5.34554500

5.68380000

С

С

С

С

С

-0.50435800 -0.00005300

-0.02965600

-0.32635000

-0.90411400

-2.28206400

-0.00007700

-0.00003500

0.00003500

-0.00013100

Н	2.18310000	2.18800000	-0.00010000	Н	10.60400000	0.0000000	0.00010000
С	2.67560000	-0.00010000	0.0000000	Н	2.18300000	-2.18810000	-0.00010000
С	1.83420000	-1.15730000	-0.00010000	С	-3.98770000	0.0000000	0.0000000
С	4.06620000	-0.00010000	0.0000000	С	-5.21990000	0.00010000	0.0000000
С	5.30090000	-0.00010000	0.0000000	С	-6.62780000	0.0000000	0.0000000
С	6.70470000	-0.00010000	0.0000000	С	-7.35020000	-1.21650000	0.0000000
С	7.42660000	1.21890000	0.00010000	С	-7.35030000	1.21650000	0.0000000
С	7.42670000	-1.21900000	0.0000000	С	-8.73710000	-1.20890000	0.00010000
С	8.81230000	1.21090000	0.00010000	Н	-6.79910000	-2.15810000	0.0000000
Н	6.87340000	2.15910000	0.00010000	С	-8.73720000	1.20880000	0.00010000
С	8.81240000	-1.21090000	0.00010000	Н	-6.79920000	2.15810000	0.0000000
Н	6.87350000	-2.15920000	0.0000000	С	-9.43890000	0.0000000	0.00010000
С	9.51220000	0.0000000	0.00010000	Н	-9.28150000	-2.15550000	0.00010000
Н	9.35850000	2.15630000	0.00010000	Н	-9.28160000	2.15550000	0.00010000
Н	9.35860000	-2.15620000	0.00010000	Н	-10.53060000	-0.00010000	0.00010000
	2			•			
C	-0.84070400	-0.83993300	-0.00034000	C	6.38043000	0.06658500	0.00029900
C	-1.75924400	0.28219400	-0.00012400	C	/.013//100	-2.6662/500	-0.00003200
C	-1.40385500	1.64644300	0.00003000	H	4.88654100	-3.02628300	-0.00033400
C	0.51902400	-0.85910900	-0.00036300	C	7.70491400	-0.33566500	0.00039500
C	-0.14553100	2.22343700	0.00004200	Н	6.11/85200	1.12526800	0.00042600
C	1.4/641/00	0.23028500	-0.00016800	C	8.02677700	-1.69890500	0.00023200
C	1.148/3400	1.60818200	-0.00003600	H	7.27233400	-3.72631000	-0.00015800
н	-1.32/13800	-1.81/40300	-0.00050200	H	8.49935600	0.41220900	0.00059900
н	-2.24564400	2.34403600	0.00015000	H	9.0/334600	-2.00925500	0.00031000
Н	0.9/686400	-1.85026200	-0.00054300	C	-5.6813/400	-0.6609/000	0.00002800
C	0.04519200	3./1368500	0.00019100	C	-6.08220500	-2.02225400	-0.00013/00
Н	-0.41//8000	4.19822700	0.8/988100	C	-6.6/135100	0.355/8300	0.00026600
C	1.51805400	3.8/160900	0.0001/100	С	-7.42801800	-2.34612300	-0.00006200
Н	2.02444400	4.83697700	0.00024200	Н	-5.31921300	-2.80160400	-0.00032100
С	2.13444300	2.659/4900	0.00005200	C	-8.012/0100	U.UI363/00	0.00033900
H	3.208/8300	2.4846/300	0.00001800	H	-6.36053500	1.40124300	0.00039100
С	2.82384900	-0.13840100	-0.00012300	С	-8.39608900	-1.33365800	0.00017800

н -7.73435600

н -8.77263600

H -9.45569100 H -0.41785200

-3.39335900

-1.59611500

4.19843600

0.79658700 0.00052400

-0.00018800

0.00023800

-0.87934500

Excitation energies a the ground-state struc	nd oscillator st ctures (S ₀) of 1	trengths from – 4 and 1-H ⁺ -	80 -> 87 80 -> 89	0.65058 0.10755 ***	
	$4-H^+$		4		
pbe1pbe/cc-pV	DZ TD=(Nstat	es=20)	Excited State 1: 603.66 nm f=0.1593	Singlet-A	2.0539 eV
scrf=(cncm	solvent=ch2cl2	2)	85 -> 87	0.12730	
serj (epeni,	5017011 0112012	<i></i>	86 -> 87	0.64090	
			86 -> 88	0.16854	
			Excited State 2:	Singlet-A	2.9902 eV
1			414.63 nm f=0.9717		
Excited State 1:	Singlet-A	2.0192 eV	85 -> 87	0.46193	
614.01 nm f=0.0071			86 -> 87	-0.17817	
86 -> 87	0.68539		86 -> 88	0.45765	
Excited State 2:	Singlet-A	2.9564 eV	Excited State 3:	Singlet-A	3.4421 eV
419.38 nm ±=0.2919	0.0000		360.20 nm f=0.4008	0 00505	
85 -> 87	0.23604		83 -> 87	0.32737	
86 -> 88	0.62013	0 5115	85 -> 8/	0.421/0	
Excited State 3:	Singlet-A	3.511/ eV	86 -> 88	-0.38/61	
353.06 nm I=1.3448	0 (7000		Excited State 4:	Singlet-A	3./26/ eV
86 -> 89	0.6/909		332.69 mill 1=0.0643	0 (7270	
Exciled State 4: $240, 89, nm, f=0, 2042$	Singlet-A	3.3430 eV	Evalted State 5.	Cipalot-7	2 9706 017
549.00 IIIII 1−0.2945	0 63499		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SINGLEL-A	J.0/90 EV
05 -> 07	-0 19093		519.30 IIII 1-0.2424 95 _> 99	0 66004	
Evalted State 5.	Singlot-N	3 7955 017	85 -> 88	***	
326 66 pm = f = 0.6449	SINGIEL-A	J./900 EV	1_ ⁺		
81 _> 87	0 12177		Fraited State 1.	Singlet-A	2 5167 OV
85 -> 88	0.67647		492.65 pm = f = 0.0189	bingice n	2.0107 60
00 / 00	***		85 -> 87	-0 15183	
2			86 -> 87	0.13103	
Excited State 1.	Singlet-A	2 0656 eV	86 -> 88	-0 22022	
$600\ 23\ \text{nm}\ f=0\ 0246$	bingice n	2:0000 00	Excited State 2:	Singlet-A	2.6101 eV
85 -> 87	-0.10929		475.02 nm f=0.0265		
86 -> 87	0.67099		85 -> 87	-0.11805	
Excited State 2:	Singlet-A	2.9602 eV	86 -> 87	0.19218	
418.84 nm f=0.3315	2		86 -> 88	0.65704	
85 -> 87	0.53832		Excited State 3:	Singlet-A	2.7816 eV
86 -> 87	0.10726		445.73 nm f=0.0234	2	
86 -> 88	0.39995		85 -> 87	0.67121	
Excited State 3:	Singlet-A	3.4542 eV	86 -> 87	0.16186	
358.93 nm f=1.8054			Excited State 4:	Singlet-A	2.9152 eV
85 -> 87	-0.35132		425.30 nm f=0.0294		
86 -> 88	0.50622		85 -> 88	0.70008	
86 -> 89	0.10320		Excited State 5:	Singlet-A	3.4636 eV
Excited State 4:	Singlet-A	3.7376 eV	357.96 nm f=0.0000		
331.72 nm f=0.1081			84 -> 87	0.70701	
84 -> 87	0.19917		- +	* * *	
85 -> 88	0.65286		2-Н		
Excited State 5:	Singlet-A	3.9224 eV	Excited State 1:	Singlet-A	2.3101 eV
316.10 nm ±=0.2008	0 66070		536./0 nm f=0.6119	0 00005	
86 -> 89	0.663/0		86 -> 87	0.63935	
2			80 - 288	U.11406	2 5001 01
S	Cinclet A	2 1579 51	Exciled State 2 :	SINGIEL-A	2.3001 eV
574.60 pm = f = 0.0119	SINGIEL-A	2.1370 ev	494.34 IIII 1-0.0392 86 -> 87	_0 10148	
85 _> 87	0 67574		86 -> 88	-0.10140	
86 -> 88	0.07574		Evolted State 3.	Singlet-A	3 1408 00
Excited State 2.	Singlet-A	2 6731 eV	394 75 nm f=0.4815	bingice n	3.1100 CV
463 82 nm f=1 8774	bingice n	2.0751 CV	85 -> 87	0 68036	
85 -> 88	-0.13679		Excited State 4:	Singlet-A	3.4721 eV
86 -> 87	0.64563		357.09 nm f=0.0129		
Excited State 3:	Singlet-A	3.5633 eV	84 -> 87	0.69753	
347.95 nm f=0.1371	<u> </u>	-	86 -> 89	0.10125	
84 -> 87	0.67035		Excited State 5:	Singlet-A	3.4924 eV
86 -> 89	0.10029		355.01 nm f=0.5403	-	
Excited State 4:	Singlet-A	3.9986 eV	83 -> 87	0.10402	
310.07 nm f=0.0566			84 -> 87	-0.10900	
77 -> 87	0.15345		86 -> 89	0.64972	
86 -> 88	0.65718		•+	* * *	
Excited State 5:	Singlet-A	4.0769 eV	3-н		0 0 0 4 -
304.12 nm f=0.0000	0 00 00 -		Excited State 1:	Singlet-A	2.3919 eV
/9 -> 87	0.22605		518.36 nm f=2.0692		

86 -> 87 Excited State 2:	0.65022 Singlet-A	2.7156 eV
456.56 nm f=0.0225 85 -> 87 86 -> 88	0.10059 0.66347	
Excited State 3: 398.43 nm f=0.0043	Singlet-A	3.1118 eV
85 -> 87	0.66049	
Excited State 4: 376.39 nm f=0.3558	Singlet-A	3.2940 eV
85 -> 88	0.68178	
Excited State 5:	Singlet-A	3.4716 eV
357.13 nm f=0.0065		
83 -> 87	0.68708	
83 -> 88	0.11266	
	* * *	
4-H ⁺		
Excited State 1: 505.57 nm f=1.4672	Singlet-A	2.4524 eV
86 -> 87	0.65236	
Excited State 2: 448.53 nm f=0.1702	Singlet-A	2.7643 eV
86 -> 88	0.66107	
Excited State 3:	Singlet-A	3.2117 eV
386.04 nm f=0.0782	2	
85 -> 87	0.66768	
Excited State 4:	Singlet-A	3.3397 eV
371.24 nm f=0.3089	-	
85 -> 88	0.69386	
Excited State 5:	Singlet-A	3.4406 eV
360.36 nm f=0.0066	-	
84 -> 87	0.68871	
84 -> 88	-0.10196	

Excitation energies and oscillator strengths from the excited-state structures (S_1) of 1-H⁺ - 4-H⁺

td=(nstates=4,root=1)/cc-pvdz
scrf=(cpcm,solvent=dichloromethane,ex
ternaliteration,read) nosymm pbe1pbe ...

1-H ⁺
Excited State 1: 0.9411 eV 1317.48 nm
f=0.0042
86 -> 87 0.70301
This state for optimization and/or second-
order correction.
Total Energy, E(TD-HF/TD-KS) = - 999 504995398
Copving the excited state density for this
state as the 1-particle RhoCI density
Excited State 2: 1.6430 eV 754.64 nm
f=0.0377
86 -> 88 0.70346

2-н ⁺
Excited State 1: 1.6221 eV 764.36 nm
f=0.1305
84 -> 87 0.10672
86 -> 87 -0.68318
86 -> 88 0.15597
This state for optimization and/or second-
order correction.
Total Energy, E(TD-HF/TD-KS) = -
999.518893816
Copying the excited state density for this
state as the 1-particle RhoCI density.
order correction. Total Energy, E(TD-HF/TD-KS) = - 999.518893816 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 1.8303 eV 677.42 nm 2: f=0.0193 86 -> 87 0.14859 86 -> 88 0.68502 *** 3-н+ Excited State 2.2103 eV 560.93 nm 1: f=1.0057 86 -> 87 -0.65979 86 -> 88 0.24772 This state for optimization and/or secondorder correction. Total Energy, E(TD-HF/TD-KS) = -999.499405617 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.5274 eV 490.56 nm f=0.9454 85 -> 87 0.15136 86 -> 87 0.25330 86 -> 88 0.63802 * * * $4 - H^{+}$ Excited State 1: 2.3980 eV 517.04 nm f=1.2574 86 -> 87 -0.70448 This state for optimization and/or secondorder correction. Total Energy, E(TD-HF/TD-KS) = -999.487309197 Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.7520 eV 450.53 nm f=0.0970 85 -> 87 0.15141 86 -> 88 -0.68200

Excitation energies and oscillator strengths from the excited-state structures (S₂) of 1 - 4

* * *

td=(nstates=4,root=1)/cc-pvdz

scrf=(cpcm,solvent=dichloromethane,ex

ternaliteration, read) nosymm pbe1pbe ...

1	
Excited State 1:	1.7598 eV 704.53 nm
f=0.0025	
86 -> 87	-0.70258
Excited State 2: f=0.2219	2.6962 eV 459.84 nm
85 -> 87	0.22609
86 -> 88	0.66580
This state for optimi	zation and/or second-
order correction.	
Total Energy, E(TD-HE	/TD-KS) = -
999.060104241	
Copying the excited s	state density for this
state as the 1-particl	e RhoCI density.
*	< * *
2	
Excited State 1:	1.8369 eV 674.96 nm
f=0.0115	
85 -> 87	-0.21890
86 -> 87	0 66351
	0.00001
Excited State 2:	2.7096 eV 457.57 nm
Excited State 2: f=0.4239	2.7096 eV 457.57 nm
Excited State 2: f=0.4239 85 -> 87	2.7096 eV 457.57 nm 0.59924

86 -> 87 0.21090 86 -> 88 0.28417 This state for optimization and/or secondorder correction. Total Energy, E(TD-HF/TD-KS) = -999.060104241 Copying the excited state density for this state as the 1-particle RhoCI density.

3

Excited State 1: 2.0398 eV 607.83 nm f=0.0054 85 -> 87 -0.69774 Excited State 2: 2.4478 eV 506.52 nm f=1.6803 85 -> 88 -0.12617 86 -> 87 0.69831 This state for optimization and/or secondorder correction. Total Energy, E(TD-HF/TD-KS) = -999.062629047 Copying the excited state density for this state as the 1-particle RhoCI density. *** 4 Excited State 1: 1.8633 eV 665.38 nm f=0.2052 85 -> 87 0.10613 86 -> 87 0.67741 86 -> 88 0.14172 Excited State 2: 2.7860 eV 445.02 nm f=1.2444 85 -> 87 0.48897 86 -> 87 -0.17958 86 -> 88 0.47085 This state for optimization and/or secondorder correction. Total Energy, E(TD-HF/TD-KS) = -999.048103451

Copying the excited state density for this state as the 1-particle RhoCI density.

Figure S21. Most significant bond shortenings (red) and elongations (green) observed between the ground-state (S_0) and excited state (S_2) structures of 1 - 4 (reported on the TD-DFT optimized S_2 geometries).

Figure S22. Most significant bond shortenings (red) and elongations (green) observed between the ground-state (S_0) and excited state (S_1) structures of $1-H^+ - 4-H^+$ (reported on the TD-DFT optimized S_1 geometries).

Frontier orbitals of the ground-state of 1 - 4

Figure S23. Frontier orbitals of the ground-state of 1.

Figure S24. Frontier orbitals of the ground-state of 2.

Figure S25. Frontier orbitals of the ground-state of 3.

Figure S26. Frontier orbitals of the ground-state of 4.

Figure S27. Frontier orbitals of the ground-state of 1-H⁺.

Figure S28. Frontier orbitals of the ground-state of 2-H+.

Figure S29. Frontier orbitals of the ground-state of 3-H+.

Figure S30. Frontier orbitals of the ground-state of 4-H+.

TD-DFT UV-Vis spectra

Figure S31. TD-DFT UV-Vis spectra produced by Gaussview (epsilon vs. nm) as calculated for 1, 2, 3 and 4 at the PBE1PBE/cc-pVDZ level.

Figure S32. TD-DFT UV-Vis spectra produced by Gaussview (epsilon vs. nm) as calculated for 1 and $1-H^+$ at the PBE1PBE/cc-pVDZ level.

Figure S33. TD-DFT UV-Vis spectra produced by Gaussview (epsilon vs. nm) as calculated for 2 and $2-H^+$ at the PBE1PBE/cc-pVDZ level.

Figure S34. TD-DFT UV-Vis spectra produced by Gaussview (epsilon vs. nm) as calculated for 3 and $3-H^+$ at the PBE1PBE/cc-pVDZ level.

Figure S35. TD-DFT UV-Vis spectra produced by Gaussview (epsilon vs. nm) as calculated for 4 and $4-H^+$ at the PBE1PBE/cc-pVDZ level.

UV-Vis spectra

Figure S36. UV-Vis spectra of 1 in CH₂Cl₂ (black line), after treatment with MeSO₃H (red line) followed by treatment with NEt₃ (blue line).

Figure S37. UV-Vis spectra of 2 in CH_2Cl_2 (black line), after treatment with $MeSO_3H$ (red line) followed by treatment with NEt_3 (blue line).

Figure S38. UV-Vis spectra of **3** in CH₂Cl₂ (black line), after treatment with MeSO₃H (red line) followed by treatment with NEt₃ (blue line).

Figure S39. UV-Vis spectra of **4** in CH₂Cl₂ (black line), after treatment with MeSO₃H (red line) followed by treatment with NEt₃ (blue line).

Figure S40. UV-Vis spectra of 1 in CH₂Cl₂ upon acid treatment.

Figure S41. Excitation and emission spectra of 1 in CH₂Cl₂ upon acid treatment.

Figure S42. UV-Vis spectra of 2 in CH₂Cl₂ upon acid treatment.

Figure S43. Excitation and emission spectra of 2 in CH₂Cl₂ upon acid treatment.

Figure S44. UV-Vis spectra of 3 in CH_2Cl_2 upon acid treatment (signal loss of the blue line at $\lambda \leq 300$ nm probably due to scattering).

Figure S45. Excitation and emission spectra of 3 in CH₂Cl₂ upon acid treatment.

Figure S46. UV-Vis spectra of 4 in CH₂Cl₂ upon acid treatment.

Figure S47. Excitation and emission spectra of 4 in CH₂Cl₂ upon acid treatment.

References

- (1) Budavari, S. O. N., M.J.; Smith, A.; Heckelman, P.E. *The Merck Index, an Encyclopedia of Chemicals, Drugs, and Biologicals*; Eleventh Edition ed.; Merck Co., Inc., Rahway, NJ, 1989.
- (2) Gottlieb, H. E. K., V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.
- Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.
- (4) Adamo, C.; Barone, V. J. Chem. Phys. 1999, 110, 6158.
- (5) Dunning, J. T. H. J. Chem. Phys. 1989, 90, 1007.
- (6) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218.
- (7) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256, 454.
- (8) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439.
- (9) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995.
- (10) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.
- (11) Fabian, K. H. H.; Elwahy, A. H. M.; Hafner, K. Eur. J. Org. Chem. 2006, 791.
- (12) Chen, X.-Y.; Barnes, C.; Dias, J. R.; Sandreczki, T. C. Chem. Eur. J. 2009, 15, 2041.
- (13) Based on 7.
- (14) Koch, M.; Blacque, O.; Venkatesan, K. Org. Lett. 2012, 14, 1580.
- (15) For ¹H-NMR a highly concentrated solution was diluted in CD_2Cl_2 . Due to the mentioned no ¹³C-NMR spectrum could be obtained.
- (16) Based on 7.
- (17) Amir, E.; Amir, R. J.; Campos, L. M.; Hawker, C. J. J. Amer. Chem. Soc. 2011, 133, 10046.