Supporting Information

High-performance electron-transporting hybrid rylenes with low threshold voltage

Xiangguang Li, Chengyi Xiao, Wei Jiang* and Zhaohui Wang* Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China E-mail: jiangwei@iccas.ac.cn; wangzhaohui@iccas.ac.cn

Table of Contents

1.	Thin-Film Absorptions of Compounds 3a-3d	S2
2.	TGA of Compounds 3a-3d	S3
3.	DSC of Compounds 3a-3d	S3
4.	OFETs Characteristics of 3a-3d	S4
5.	AFM Images of 3a-3d	S6
6.	NMR and MS Spectra of Compounds 3a-3d	S7

1, Thin-Film Absorptions of Compounds 3a-3d

Fig. S1 (a) UV-vis absorption spectra of compounds NDI, diPDI, and 3a-3d in CHCl₃ solution (1×10⁻⁵ mol/L, NDI: N,N'-di-n-octylnaphthalene-1,4,5,8-tetracarboxylic acid diimide, diPDI: N,N'-di(2,6-diisopropylphenyl)-perylene-3,4:9,10-tetracarboxylic acid bisimide). (b) Normalized absorption spectra of compounds 3a-3d in thin films.

2, TGA of Compounds 3a-3d

Fig. S2 Thermogravimetric analysis of compounds 3a-3d

3, DSC of Compounds 3a-3d

Fig. S3 Differential scanning calorimetry (DSC) curves of powder of compound **3a-3d** (Upward peaks indicate exothermic processes, while downward peaks indicate endothermic processes).

4, OFETs Characteristics of 3a-3d

Fig. S4 Transfer curves of the best performing thin film transistor made from 3a-3d at optimized annealing temperature in air ($V_{sd} = 70$ V), devices based on 3a, 3b, 3c, and 3d were fabricated by spin coating on OTS-treated Si/SiO₂ substrates annealed at 200, 240, 240, and 200 °C, respectively.

Fig. S5 Air-stability test of compound 3b over a period of 100 days (annealed at 200 °C).

Compounds	T	μ	VT	$I_{\rm on}/I_{\rm off}$
	[0]	$[cm^2 V^4 s^4]$	[V]	3
	25	1.87×10	3.72	6.75×10
20	160	4.17×10^{-4}	0.58	2.58×10^{4}
Ja	200	2.97×10 ⁻³	0.35	6.52×10 ⁴
	240	1.89×10^{-3}	18.1	7.55×10^{4}
	25	3.77×10 ⁻³	1.27	2.01×10 ⁵
2h	160	6.90×10 ⁻²	-1.58	8.67×10 ⁵
30	200	1.25×10	-3.69	4.11×10 ⁶
	240	1.78×10 ⁻¹	0.95	5.49×10 ⁵
	25	7.85×10 ⁻⁴	-3.78	1.22×10 ⁵
30	160	9.20×10 ⁻³	0.09	9.70×10 ⁵
51	200	1.44×10 ⁻²	1.71	1.45×10 [°]
	240	5.44×10 ⁻²	9.91	3.45×10 ⁶
	25	4.53×10 ⁻³	-1.78	6.11×10 [°]
34	160	4.49×10 ⁻²	3.03	5.56×10 ⁶
Ju	200	7.38×10 ⁻²	11.6	6.07×10 ⁶
	240	8.92×10 ⁻³	4.70	1.43×10 ⁶

Table S1 Device performance of thin-film transisitors for compounds **3a-3d** at various annealing temperature in air.

Fig. S6 AFM images (on OTS modified Si substrate with tapping mode) of thin film of **3a-3d** after annealing at various temperatures.

6, NMR and MS Spectra of Compounds 3a-3d

¹H NMR Spectrum of **3a** in CDCl₃ at 400 MHz

^{13}C NMR Spectrum of 3a in CDCl3 at 150 MHz

MALDI-TOF mass spectrum of **3a**

¹H NMR Spectrum of **3b** in 1,1,2,2-tetrachloroethane- d_2 at 300 MHz

 ^{13}C NMR Spectrum of **3b** in 1,1,2,2-tetrachloroethane-d_2 at 75 MHz

MALDI-TOF mass spectrum of **3b**

^{13}C NMR Spectrum of 3c in CDCl3 at 150 MHz

MALDI-TOF mass spectrum of 3c

¹H NMR Spectrum of **3d** in CDCl₃ at 400 MHz

