Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Information

Bipolar Host Materials for High Efficiency Phosphorescent Organic Light Emitting Diodes: Tuning the HOMO/LUMO Levels without Reducing the Triplet Energy in Linear System

Lin-Song Cui, Yuan Liu, Xiao-Dong Yuan, Qian Li, Zuo-Quan Jiang,* and Liang-Sheng Liao*

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, People's Republic of China.

CONTENT

- Optimized geometry and simulated of the HOMO/LUMO levels of S₀ and T₁ state for BCz derivatives (Firgure S1 and Table S1)
- TGA thermograms of BCz derivatives (Firgure S2)
- Energy level diagrams for devices (Firgure S3)
- Power efficiency versus luminescence of devices BA-BC (Firgure S4)
- Power efficiency versus luminescence of devices WA and WB (Firgure S5)
- \blacksquare ¹H, ¹³C NMR and MS spectra of all compounds

3D structure	Based on the \mathbf{S}_{0} state		Based on the T ₁ state	
	номо	LUMO	номо	LUMO
BCzPh	Speries.	Ants.	Smit	1000
BCzSCN	Morris	i st	State.	
100 A	apres .		Speit	
BCzSPO				

Firgure S1. Optimized geometry and spatial distributions of the HOMO and LUMO levels for BCz derivatives.

Table S1. Simulated HOMO/LUMO energies of S_0 and T_1 state for BCz derivatives.

Compound	HOMO (eV)	LUMO (eV)	$E_{\rm T}({ m eV})$
BCzPh	4.96	0.67	3.02
BCzSCN	5.21	1.12	3.04
BCzSPO	5.11	0.92	3.02

Figure S2. TGA thermograms of BCz derivatives.

Figure S2. Energy levels of the materials employed in the devices.

Figure S3. Power efficiency versus luminescence curves of devices BA-BC.

Figure S4. Power efficiency versus luminescence curves of devices WA and WB.

400 MHz ¹H NMR spectrum of BCzPh in CDCl₃

100 MHz ¹³C NMR spectrum of BCzPh-Br in CDCl₃

400 MHz ¹H NMR spectrum of BCzSCN in CDCl₃

100 MHz ^{13}C NMR spectrum of BCzSCN in CDCl_3

⁴⁰⁰ MHz ¹H NMR spectrum of BCzSPO in CDCl3

100 MHz ¹³C NMR spectrum of BCzSPO in CDCl3

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is @ The Royal Society of Chemistry 2013

MS spectrum of BCzPh

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is @ The Royal Society of Chemistry 2013

MS spectrum of BCzPh-Br

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is @ The Royal Society of Chemistry 2013

MS spectrum of BCzSCN

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is @ The Royal Society of Chemistry 2013

MS spectrum of BCzSPO