Supplementary Information

to

Bismuth sulphide/polymer nanocomposites from a highly soluble

bismuth xanthate precursor

Verena Kaltenhauser, Thomas Rath, Wernfried Haas, Ana Torvisco, Stefan K. Müller, Bettina Friedel, Birgit Kunert, Robert Saf, Ferdinand Hofer, Gregor Trimmel

Precursor Synthesis:

Potassium xanthate: Potassium O-3,3-dimethylbutan-2-yl dithiocarbonate

Potassium *tert*-butoxide (13.2 g, 117 mmol, 1.0 eqiv.) was dissolved in THF and cooled to 0 °C under an Argon flow. Afterwards 3,3-dimethyl-2-butanol (15.0 g, 129 mmol, 1.1 equiv.) was added slowly under stirring and after several minutes carbon disulphide was added drop wise. The reaction mixture was stirred for 5 hours before the solution was diluted with 1 L diethyl ether. The resulting solid was dried in vacuum before it was dissolved again in 150 mL refluxing acetone to remove insoluble side products. The acetone phase was concentrated to approx. 50 mL by rotary evaporation before the product was precipitated with diethyl ether (1 L). The yellowish-white powder was separated by filtration and dried in vacuum (yield: 18.3 g, 76 %).

¹H NMR (300 MHz, 20 °C, acetone-d₆, δ): 5.64-5.59 (m, 1H, CH-OK), 1.68-1.46 (m, 2H, CH₂), 0.93-0.89 (m, 12H, 4xCH₃) ppm, ¹³C NMR (75 MHz, 20 °C, acetone-d₆, δ): 235.4 (CS₂O), 88.7 (CH), 36.2 (<u>C</u>(CH₃)), 26.8 (C(<u>C</u>H₃)), 24.1 (CH₂), 11.6 (CH₂-<u>C</u>H₃) ppm.

IR (on Si wafer): 2964, 2872, 1457, 1393, 1382, 1365, 1231, 1205, 1140, 1109, 1070, 1042, 1021, 951 cm⁻¹.

Anal.calcd for C₈H₁₅S₂OK: C 41.70, H 6.56, S 27.83; found: C 42.70, H 6.59, S 26.38.

1

HRMS Investigations:

Fig. S1 Total ion current (TIC) of the HRMS investigations with DI-EI (temperature program of the DI: start at 40 °C, heating rate 10 °C/min), measurements were carried out under high vacuum.

Fig. S2 EI mass spectra recorded at different temperatures of the direct insertion probe showing volatile species. Around 160 °C mainly chloroform was observed (A). At higher temperatures - 175 °C in (B) - the evolution of thermal decomposition products increases, e.g. COS at 60 Da, CS₂ at 75.9, and C₆H₁₂ at m/z = 84 Da. Additionally, BiHexXan starts to evaporate due to the high vacuum conditions used during the measurement, what can be deduced from the Bi-containing fragment ion $C_2H_2O_2S_4Bi$ at 394.9 Da. Further increase of the temperature - 200 °C in (C) - favours the evaporation in comparison to the thermal decomposition, consequently the relative intensity of ions containing Bi increases (m/z = 394.9, 479.0, 563.1 Da). Exact masses and interpretations for these ions are shown in Fig. S3.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2013

Fig. S3 Comparison of measured (bottom) and calculated masses (above) of ions containing Bi. No molecule ion was observed for BiHexXan, nevertheless these results are an additional proof of the structure.

IR frequency / cm ⁻¹	Assignments
2963	-CH ₂ - str. asym.
2871	-CH ₂ - str. sym.
1475	alkane deformation
1450	
1369	sym. CH ₃ bnding
1335	CH wagging
1238	asym. C-O-C str.
1203	
1115	sym. C-O-C str.
1047	C=S str.
1017	

Fig. S4 Absorption spectrum of a $Bi_2S_3/P3HT$ nanocomposite layer.

¹ G. Socrates, Infrared Characteristic Group Frequences, Tables and Charts, Second Edition, Wiley, Chichester, **1994**.

² D. Barreca, A. Gasparotto, C. Maragno, R. Seraglia, E. Tondello, A. Venzo, V. Krishnan, H. Bertagnolli, *Appl. Organomet. Chem.* **2005**, *19*, 1002–1009.