Supporting Information for

Full-colour luminescent compounds based on anthracene

and 2, 2'- dipyridylamine

Bin Chen, ^a Gang Yu, ^b Xin Li, ^c Yubin Ding, ^a Cheng Wang, ^a Zhiwei Liu, ^{*b} Yongshu Xie^{*a}

- ^a Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai, P. R. China.; E-mail: yshxie@ecust.edu.cn; Fax: (+86) 21-6425-2758. Tel: (+86) 21-6425-0772.
- ^b Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
- ^c Department of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden.

*Corresponding Author: *Yongshu Xie* Telephone number: (86)-21-64250772 E-mail address: yshxie@ecust.edu.cn

Table of Content

Crystallography Page S2
Characterization spectra Pages S3~S12
Emission spectra of compounds in various solvents Pages S13~S16
Diagrams showing the HOMO and LUMO levels of 1~8
X-ray crystal structure of 7·····Page S17
Table of Quantum yields of 1~8 in various solvents·····Page S17

Experimental section

Crystallography

Single crystals suitable for X-ray analysis of 7 were obtained by slow evaporation of a CH_3OH-H_2O solution at room temperature.

Crystal data for **7**·**MeOH**: C₄₇H₄₆N₄O, Mw = 682.88 g·mol⁻¹, 0.40×0.39×0.20 mm³, Monoclinic, P2(1)/c, a = 24.460(2) Å, b = 10.4080(10) Å, c = 15.1901(14) Å, β = 94.2550(10)°, V = 3856.5(6) Å³, F(000) = 1456, ρ_{calcd} = 1.176 Mg·m⁻³, μ (Mo-K α) = 0.071 mm⁻¹, T = 298(2) K, 18184 data were measured on a Bruker SMART Apex diffractometer, of which 6191 were unique (R_{int} = 0.1171); 508 parameters were refined against Fo² (all data), final wR₂ = 0.3489, S = 1.074, R₁ (I > 2 σ (I)) = 0.0930, largest final difference peak/hole = +0.314 /-0.262 e.Å⁻³.

CCDC-895653 (2) and 959339 (7) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Fig. S1. The ¹H NMR spectrum of 1 in DMSO-d⁶.

Fig. S2. The 13 C NMR spectrum of 1 in DMSO-d⁶.

Fig. S4. The ¹³C NMR spectrum of 2 in CDCl₃.

Fig. S5. The ¹H NMR spectrum of **4** in DMSO- d^6 .

Fig. S6. ESI HRMS of 4 in MeOH.

Fig. S7. The ¹H NMR spectrum of **5** in DMSO- d^6 .

Fig. S8. ESI HRMS of 5 in MeOH.

Fig. S9. The ¹H NMR spectrum of 6 in CDCl₃.

Fig. S10. The 1 H NMR spectrum of 6 in CDCl₃. a) Before addition of D₂O; b) After addition of D₂O.

Fig. S11. ESI HRMS of 6 in MeOH.

Fig. S12. The ¹H NMR spectrum of **7** in DMSO- d^6 .

Fig. S13. The 13 C NMR spectrum of 7 in DMSO-d⁶.

Fig. S14. ESI HRMS of 7 in MeOH.

Fig. S15. The ¹H NMR spectrum of **8** in DMSO- d^6 .

Fig. S16. The 13 C NMR spectrum of **8** in DMSO-d⁶.

Fig. S18. The ¹H NMR spectrum of 9 in CDCl₃.

Fig. S19. The ¹H NMR spectrum of 9 in CDCl₃. a) Before addition of D₂O; b) After addition of D₂O.

Fig. S21. Emission spectra of 1 recorded in various solvents.

Fig. S22. Emission spectra of 2 recorded in various solvents.

Fig. S23. Emission spectra of 3 recorded in various solvents.

Fig. S24. Emission spectra of 4 recorded in various solvents.

Fig. S25. Emission spectra of 5 recorded in various solvents.

Fig. S26. Emission spectra of 6 recorded in various solvents.

Fig. S27. Emission spectra of 8 recorded in various solvents.

Fig. S28. Diagrams showing the HOMO and LUMO levels of 1~8.

Fig. S29. X-ray crystal structure of 7.

entry	$\Phi_{\rm F}$ /%	$\Phi_{\rm F}$ /%	$\Phi_{\rm F}$ /%	$\Phi_{\rm F}/\!\! ^{\rm 0}\!\! ^{\rm \prime}\!\! ^{\rm \prime}\!\! ^{\rm \prime}$	$\Phi_{\rm F}/\!\%$	$\Phi_{\rm F}/\!\! ^{\rm h}\!\! ^{\rm o}$
_	СН	THF	CH_2Cl_2	MeOH	ACN	DMSO
1	11	7	9	8	7.5	12
2	51	83	80	60	72	77
3	62	50	69	66	72	38
4	14	11	15	14	17	12
5	50	46	41	34	29	27
6	51	46	46	n.d.	n.d.	n.d.
7	80	74	67	21	18	12
8	26	1.3	1	n.d.	n.d.	n.d.

Table 1. Quantum yields of 1~8 in different solvents.

Note: n. d. denotes too weak signal to be detected.