Supporting Information for

Versatile van der Waals Epitaxy-like Growth of Crystal Films Using Two-dimensional Nanosheets as a Seed Layer: Oorientation Tuning of SrTiO₃ Films along Three Important Axes on Glass Substrate

Tatsuo Shibata^a, Hikaru Takano^a, Yasuo Ebina^a, Dae Sung Kim^a, Tadashi C. Ozawa^a, Kosho Akatsuka^a, Tsuyoshi Ohnishi^a, Kazunori Takada^a, Toshihiro Kogure^b, and Takayoshi Sasaki^{*a}

^a International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. Fax: +81-29-854-9061; Tel: +81-29-860-4950; E-mail: sasaki.takayoshi@nims.go.jp

^b Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

*To whom correspondence should be addressed. Fax: +81-29-854-9061; Tel: +81-29-860-4950; Email: <u>sasaki.takayoshi@nims.go.jp</u> **Fig. S1** In-plane XRD data for the nanosheet films as a seed and the top view of the nanosheet structure for $Ca_2Nb_3O_{10}^-$, $Ti_{0.87}O_2^{0.52^-}$, and $MoO_2^{\delta^-}$. Indices for $MoO_2^{\delta^-}$ are based on 2D orthorhombic unit cell. The 2D lattice is indicated by red on each nanosheet structure. The blue line on $MoO_2^{\delta^-}$ nanosheet indicates the pseudo-hexagonal cell.

Fig. S2 (a) Low-magnification TEM image of $SrTiO_3$ thin film deposited on a bare glass substrate. The inset shows the ED pattern from the film. (b) Enlarged HRTEM image of $SrTiO_3$ layer in the vicinity of the glass substrate.

