Electronic Supplementary Material (ESI) for

A high-temperature resistant polyimide gate insulator surface-modified with a YO_x interlayer for high-performance, solution-processed Li-doped ZnO thin-film transistors

Jun-Young Yoon,^{ab} Yun Ho Kim,^a Jae-Won Ka,^a Sung Kwon Hong,^b Mi Hye Yi^a and Kwang-Suk Jang^{*a}

^a Division of Advanced Materials, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea.

^b Department of Polymer Science and Engineering, Chungnam National University, Daejeon 305-764, Republic of Korea.

* Corresponding auther: kjang@krict.re.kr

Fig. S1 XPS survey spectrum of the YO_x interlayer on the polyimide film.

Fig. S2 XRD patterns of the polyimide, YO_x/polyimide and Li-ZnO/YO_x/polyimide films.

Fig. S3 XPS survey spectrum of the Li-ZnO layer on the YO_x/polyimide film.

Fig. S4 C 1s XPS spectrum of the Li-ZnO layer on the YO_x/polyimide film.

Fig. S5 Y 3d XPS spectrum of the Li-ZnO layer on the YO_x/polyimide film.

Fig. S6 Output characteristics of the Li-ZnO TFTs with the (a) polyimide and (b) YO_x /polyimide gate insulators.

Fig. S7 AFM image (5 $\mu m \times 5 \; \mu m)$ of the Li-ZnO layer on the SiO_2 gate insulator.