Supporting Information for

Perpendicularly entangled perylene diimides for high

performance electron transport materials

Linxiao Hao,^{ab} Chengyi Xiao,^{ab} Jing Zhang,^a Wei Jiang,^{*a} Wei Xu,^a Zhaohui Wang^{*a}

^a Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of

Sciences, Beijing 100190, China

^b Graduate School of the Chinese Academy of Sciences, Beijing 100190, China

jiangwei@iccas.ac.cn; wangzhaohui@iccas.ac.cn

Table of Contents

Photophysical Properties	
OTFT Properties	S5
MS of the Compounds 2a-2f, 4a-4b	S10
¹ H NMR and ¹³ C NMR Spectra in CDCl ₃	S18

Photophysical Properties

Table S1

Compounds	2a	2b	2c	2d	2e	2f	4 a	4b
$T_{\rm m} \left[{}^{\rm o}{\rm C} \right]^a$			339	289	169			

^a Melting point determined by DSC measurement with a scan rate of 10 °C/min.

Fig. S1 DSCs and TGAs of all compounds

Fig. S2 UVs in chloroform solution and in film of all compounds

Fig. S3 Fluorescence spectra of 2a-2f and thin film absorption spectra of parent compounds

Fig. S4 CVs of compounds 2a-2f

Fig. S5 CVs and DPVs of compounds 4a-4b

OTFT Properties

Table S2. The thin-film transistor	properties of PDI dimers	2a-2f, and diPDI dimers 4a-4b
------------------------------------	--------------------------	-------------------------------

Compounds	T _{annealing} [°C]	μ [cm ² V ⁻¹ s ⁻¹]	$I_{ m on/off}$	$V_{\mathrm{T}}\left[\mathrm{V} ight]$
	180	0.013	$2.0 imes 10^4$	46
2a	220	0.043	$9.0 imes 10^{5}$	44
	260	0.010	$3.0 imes 10^4$	35
	180	0.16	$5.0 imes 10^6$	45
2b	220	0.047	$6.0 imes 10^6$	20
	260	0.072	$7.0 imes 10^6$	25
	180	$6.8 imes 10^{-4}$	$2.0 imes 10^5$	26
2c	220	1.1×10^{-3}	$2.0 imes 10^5$	12
	260	$8.2 imes10^{-4}$	$4.0 imes 10^5$	48
	180	0.014	3.0×10^{4}	36
2d	220	0.055	$1.0 imes 10^5$	57
	260	0.013	$1.0 imes 10^4$	38
	RT	$1.8 imes 10^{-4}$	$5.0 imes 10^5$	44
2e	80	$1.5 imes 10^{-3}$	$9.0 imes 10^4$	25
	120	$1.8 imes10^{-4}$	$1.0 imes 10^4$	46
	180	$7.3 imes 10^{-4}$	1.0×10^{2}	-25
2f	220	$7.0 imes10^{-4}$	$7.0 imes 10^1$	-42
	260	$6.3 imes 10^{-4}$	$1.0 imes 10^1$	-74
	180	$2.8 imes 10^{-3}$	$2.0 imes 10^5$	1
4 a	220	0.027	$5.0 imes 10^6$	3
	260	0.048	$4.0 imes 10^4$	3
	180	$7.8 imes 10^{-4}$	3.0×10^{4}	12
4 b	220	$2.8 imes 10^{-3}$	$9.0 imes 10^4$	15
	260	$1.7 imes 10^{-3}$	$4.0 imes 10^5$	8

Fig. S6 Transfer and output characteristics for OTFT devices based on compounds 2a-2f and 4a-4b measured under ambient condition

Fig. S7 Comparison of XRD and AFM images of thin films of 2a-2f and 4a-4b at different annealing temperatures

Compound	Linear Chain	<i>d</i> [Å]	Compound	Branched Chain	<i>d</i> [Å]
2a	C12	22.5094	2c	С7,7	18.4677
2b	C18	27.7519	2d	C8,6	24.1176
2f	PEG	20.1629	2e	C10,12	31.0637

Table S3. The d-spacing values determined by XRD data

MS of the Compounds 2a-2f, 4a-4b

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is C The Royal Society of Chemistry 2013

¹H NMR and ¹³C NMR Spectra in CDCl₃ ¹H NMR Spectrum of 2a at 400 MHz

¹³C NMR Spectrum of 2a at 100 MHz

¹H NMR Spectrum of 2b at 400 MHz

¹³C NMR Spectrum of 2b at 100 MHz

¹H NMR Spectrum of 2c at 400 MHz

¹³C NMR Spectrum of 2c at 100 MHz

¹H NMR Spectrum of 2d at 400 MHz

¹³C NMR Spectrum of 2d at 100 MHz

¹H NMR Spectrum of 2e at 400 MHz

¹³C NMR Spectrum of 2e at 100 MHz

¹H NMR Spectrum of 2f at 400 MHz

¹³C NMR Spectrum of 2f at 100 MHz

¹H NMR Spectrum of 4a at 600 MHz

¹³C NMR Spectrum of 4a at 150 MHz

¹H NMR Spectrum of 4b at 600 MHz

¹³C NMR Spectrum of 4b at 150 MHz

