Supporting Information for

Electron deficient dicyanovinylene-ladder-type pentaphenylene derivative for n-type Organic Field Effect Transistors

Emmanuel Jacques,^a Maxime Romain,^b Ali Yassin,^b Sarah Bebiche,^a Maxime Harnois,^a Tayeb Mohammed-Brahim,^a Joëlle Rault-Berthelot,^b Cyril Poriel*^b

^a UMR CNRS 6164-Institut d'Électronique et des Télécommunications de Rennes-Département Microélectronique & Microcapteurs, Bât.11B, Université Rennes 1, Campus de Beaulieu 35042 Rennes Cedex, France

^b UMR CNRS 6226-Institut des Sciences Chimiques de Rennes- Equipe Matière Condensée et Systèmes Électroactifs, Bat 10C, Campus de Beaulieu - 35042 Rennes cedex France

TABLE OF CONTENTS

PHOTOPHYSICAL PROPERTIES	.3
THEORETICAL MODELING	.5
THERMAL ANALYSES	. 8

PHOTOPHYSICAL PROPERTIES

Figure S1. Absorption spectra of $LPP(=O)_2$ (300/700 nm) in cyclohexane (black line), in THF (red line) and in ethanol (blue line

Figure S2. Absorption spectra of $LPP(=C(CN)_2)_2$ (300/850 nm range) in cyclohexane (black line), in THF (red line) and in ethanol (blue line)

Figure S3. Fluorescence spectra of **4** in cyclohexane and in THF ($\lambda exc = 400 \text{ nm}$)

THEORETICAL MODELING

Figure S4. Calculated frontier molecular orbitals by DFT and the 6th first calculated electronic transitions by TD-DFT of **LPP**($C=(CN)_2$)₂, after geometry optimization with DFT B3LYP/6-311G+(d,p), shown with a cut-off 0.04 [e bohr⁻³]^{1/2}

Figure S5: Calculated frontier molecular orbitals by DFT and the 6th first calculated electronic transitions by TD-DFT of **LPP(=O)**₂, after geometry optimization with DFT B3LYP/6-311G+(d,p), shown with a cut-off 0.04 [e bohr⁻³]^{1/2}

Figure S6: Calculated frontier molecular orbitals by DFT and the 6th first calculated electronic transitions by TD-DFT of **LPP**, after geometry optimization with DFT B3LYP/6-311G+(d,p), shown with a cut-off 0.04 [e bohr⁻³]^{1/2}

THERMAL ANALYSES

 $LPP(=O)_2$

Td=385°C Fig S7: ATG curve of LPP(=C(CN)₂)₂

Fig S8: DSC curve (second heating cycle) of LPP(=O)₂

Fig S9: DSC curve (second heating cycle) of LPP(=C(CN)₂)₂

Fig S10: ATG curve of LPP(=C(CN)₂)₂

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is C The Royal Society of Chemistry 2014

Copy of NMR spectra

¹H NMR (CDCl₃) **LPP(C=(CN)₂)**

