# Electronic Supplementary Information for

# Liquid crystalline radicals: Discotic behavior of unsymmetric derivatives of 1,3,5-triphenyl-6-oxoverdazyl

Aleksandra Jankowiak,<sup>*a*</sup> Damian Pociecha, <sup>*b*</sup> Jacek Szczytko,<sup>*c*</sup> Hirosato Monobe,<sup>*d*</sup> and Piotr Kaszyński<sup>\* *a,e*</sup>

<sup>a</sup> Organic Materials Research Group, Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA

<sup>b</sup> Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland

<sup>c</sup> Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland

<sup>d</sup> Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology, AIST Kansai Centre, Ikeda, Osaka 563-8577, Japan

<sup>e</sup> Faculty of Chemistry, University of Łódź, Tamka 12, 91403 Łódź, Poland

# Table of Content:

| 1. Additonal synthetic details                                     | S2  |
|--------------------------------------------------------------------|-----|
| 2. Powder XRD measurements                                         | S4  |
| 3. α-FMO contours                                                  | S8  |
| 4. Partial data for TD-DFT calculation (B3LYP/6-31G(d,p)) for 1[1] | S9  |
| 5. Archive data for B3LYP/6-31G(d,p) geometry optimizations        | S15 |
| 6. References                                                      | S21 |

## **1. Additional synthetic details**

Reagents and solvents were obtained commercially. Reactions were carried out under Ar, and subsequent manipulations were conducted in air. <sup>1</sup>H NMR spectra were obtained at 400 MHz (<sup>1</sup>H) in CDCl<sub>3</sub> and referenced to the solvent unless stated otherwise.

**Hydrazones 4[10]. General Procedure.** To a solution of crude 3,4,5-tri(decyloxyphenyl)hydrazine<sup>1</sup> or 3,4,5-tri(decylsulfanyl)phenylhydrazine<sup>1</sup> (**2[10]**, 1.3 mmol) and 3,4,5-tri(decyloxy)benzaldehyde<sup>2,3</sup> or 3,4,5-tri(decylsulfanyl)benzaldehyde<sup>4</sup> (**3[10]**, 1.0 mmol) in EtOH (4 mL) 1 drop of AcOH was added. The mixture was refluxed for 1 h under Ar, cooled to rt, solvent was evaporated, and traces of AcOH removed on vacuum to give 90~% yield of crude hydrazone **4[10]** (~70% pure), which was used for the next step without additional purification.

# 3,4,5-Tri(decyloxy)benzaldehyde 3,4,5-tri(decylsulfanyl)phenylhydrazone 4[10] (X=S,Y=O).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.85-0.91 (m, 18H), 1.20-1.42 (m, 72H), 1.43-1.52 (m, 12H), 1.55-1.62 (m, 2H), 1.75 (quin, *J* = 7.2 Hz, 6H), 1.80 (quin, *J* = 7.0 Hz, 4H), 2.79 (t, *J* = 6.6 Hz, 2H), 2.89 (t, *J* = 6.6 Hz, 4H), 3.98 (t, *J* = 6.1 Hz, 2H), 4.01 (t, *J* = 6.4 Hz, 4H), 6.65 (s, 2H), 6.84 (s, 2H), 7.57 (s, 1H), 7.58 (s, 1H).

3,4,5-Tri(decylsulfanyl)benzaldehyde

# 3,4,5-tri(decyloxy)phenylhydrazone 4[10]





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (major signals) d 0.84-0.92 (m, 18H), 1.20-1.41 (m, 72H), 1.43-1.52 (m, 12H), 1.55-1.64 (m, 2H), 1.68-1.86 (m, 10H), 2.85 (t, J = 7.4 Hz, 2H), 2.92 (t, J = 7.5 Hz, 4H), 3.89 (t, J = 6.5 Hz, 2H), 3.98 (t, J = 6.4 Hz, 4H), 6.33 (s, 2H), 7.15 (s, 2H), 7.56 (s, 2H).

**Carbamoyl chlorides 5[10]. General Procedure.** To a solution of crude hydrazone **4[10]** (1.0 mmol) in dry  $CH_2Cl_2$  (10 mL) pyridine (1.2 mmol) followed by triphosgene (297 mg, 1.0 mmol) were added under Ar. The mixture was stirred at ambient temperature for 4 hrs, 1% HCl was added, organic products were extracted ( $CH_2Cl_2$ ), extracts dried ( $Na_2SO_4$ ), and solvent evaporated. The crude product was purified on a short silica gel column (hexane /  $CH_2Cl_2$ , 4:1) to give chloride **5[10]** as yellowish viscous oil in yields ~50%.

# 3,4,5-Tri(decylsulfanyl)benzaldehyde-chloroformyl-3,4,5tri(decyloxy)phenylhydrazone 5[10](X=O,Y=S).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.84-0.91 (m, 18H), 1.20-1.38 (m, 72H), 1.42-1.52 (m, 12H), 1.53-1.62 (m, 2H), 1.73 (quin, J = 7.5 Hz, 6H), 1.80 (quin, J = 7.1 Hz, 4H), 2.84 (t,

*J* = 7.4 Hz, 2H), 2.89 (t, *J* = 7.3 Hz, 4H), 3.93 (t, *J* = 6.5 Hz, 4H), 4.03 (t, *J* = 6.5 Hz, 2H), 6.40 (s, 2H), 7.15 (s, 2H), 7.24 (s, 1H). Molecular ions in MS were not observed.

# 3,4,5-Tri(decyloxy)benzaldehyde-chloroformyl-3,4,5-tri(decylsulfanyl)phenylhydraz one 5[10] (X=S,Y=O).



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.84-0.91 (m, 18H), 1.20-1.38 (m, 72H), 1.39-1.50 (m, 12H), 1.62 -1.76 (m, 8H), 1.80 (quin, *J* = 7.4 Hz, 4H), 2.81 (t, *J* = 7.4 Hz, 4H), 2.91 (t, *J* = 7.4 Hz, 2H), 3.98 (t, *J* = 6.5 Hz, 6H), 6.67 (s, 2H), 6.87 (s, 2H), 7.28 (s, 1H). HRMS calcd for C<sub>74</sub>H<sub>132</sub>ClN<sub>2</sub>O<sub>4</sub>S<sub>3</sub> m/z 1243.9032; found m/z 1243.9018.

# 2,6-Di(3,4,5-tridecyloxyphenyl)-4-(3,4,5-tridecylsulfanylphenyl)-1,2,4,5-tetrazine-3one 6[10]d.



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  0.84-0.94 (m, 27H), 1.20-1.51 (m, 126H), 1.52-1.64 (m, 8H), 1.65-1.83 (m, 10H), 2.61 (t, *J* = 7.1 Hz, 4H), 2.81 (t, *J* = 7.5 Hz, 2H), 3.91 (t, *J* = 6.6 Hz, 4H), 3.93 (t, *J* = 6.5 Hz, 8H), 4.71 (d, *J* = 8.5 Hz, 2H), 5.46 (t, *J* = 8.5 Hz, 1H), 6.81 (s, 4H), 6.99 (s, 2H). The molecular ion in MS was not observed.

# 2. Powder XRD measurements

X-ray diffraction experiments were performed with Bruker D8 GADDS (Cu Ka

radiation, Göbel mirror, point collimator, Vantec 2000 area detector) equipped with a modified Linkam heating stage and with Bruker NanoStar small angle diffractometer (Cu  $K_{\alpha}$  radiation, cross-coupled Göbel mirrors, 3 pinhole collimator, Vantec 2000 area detector). Samples were prepared in a form of a thin film or a droplet on heated surface. The X-ray beam was incident nearly parallel to sample surface, and resulting XRD patterns were recorded as a function of temperature.

Experimental pattern was at first indexed using indexing procedure implemented in Topas I software (Bruker), in this step a space group was found as well rough estimation of unit cell parameter. Next, the whole pattern was fitted using Topas software, assuming previously determined lattice symmetry and taking unit cell dimensions and background parameters as fitted variables (so called 'hkl phase'). In this procedure the intensity of each simulated peak is an independent variable with no physical meaning.

Results are shown in Fig. S1 and S2 and Tables S1-S5.



**Fig. S1**. 2D patterns for **1[10]d**: a)  $Col_{h(3D)}$  phase at 70 °C, sample heated from the crystalline phase; b)  $Col_h$  phase at 78 °C, sample cooled from the isotropic phase; c)  $Col_{h(3D)}$  phase at 70 °C, sample cooled from the  $Col_h$  phase.



**Fig. S2**. Temperature dependence of the position of low angle reflections for **1d[10]** recorded on cooling.

|      |               | Miller  | $d_{meas}$ | $d_{calcd}$ | Cell             |
|------|---------------|---------|------------|-------------|------------------|
| Temp | Phase         | indices | /Å         | /Å          | parameter        |
| ∕°C  |               | hk      | obs        | calcd       | /Å               |
| 75   | $Col_{\rm h}$ | 10      | 23.55      | 23.55       | <i>a</i> = 27.19 |
|      |               | 11      | 13.58      | 13.59       |                  |
|      |               | 20      | 11.78      | 11.77       |                  |
|      |               |         |            |             |                  |

 Table S1. Selected X-ray diffraction data for 1[10]c.

Table S2. Selected X-ray diffraction data for 1[10]d at 78 °C.

|      |               | Miller  | $d_{meas}$ | $d_{calcd}$ | Cell             |
|------|---------------|---------|------------|-------------|------------------|
| Temp | Phase         | indices | /Å         | /Å          | parameter        |
| ∕°C  |               | hk      | obs        | calcd       | /Å               |
| 78   | $Col_{\rm h}$ | 10      | 23.44      | 23.43       | <i>a</i> = 27.05 |
|      |               | 11      | 13.52      | 13.53       |                  |
|      |               |         |            |             |                  |

|      |               | Miller  | $d_{meas}$ | $D_{calcd}$ | Cell            |
|------|---------------|---------|------------|-------------|-----------------|
| Temp | Phase         | indices | /Å         | /Å          | parameters      |
| /°C  |               | hkl     | obs        | calcd       | /Å              |
|      |               |         |            |             |                 |
| 70   | $Col_{h(3D)}$ | 100     | 24.15      | 24.14       | a = 27.9        |
|      |               | 101     | 20.64      | 20.63       | <i>c</i> = 39.7 |
|      |               | 102     | 15.36      | 15.36       |                 |
|      |               | 110     | 13.98      | 13.97       |                 |
|      |               | 111     | 13.19      | 13.18       |                 |
|      |               | 201     | 11.57      | 11.57       |                 |
|      |               | 210     | 9.15       | 9.14        |                 |
|      |               | 211     | 8.92       | 8.92        |                 |
|      |               | 212     | 8.32       | 8.32        |                 |
|      |               | 300     | 8.06       | 8.06        |                 |
|      |               | 213     | 7.49       | 7.52        |                 |
|      |               | 302     | 7.49       | 7.47        |                 |
|      |               | 220     | 6.98       | 6.98        |                 |
|      |               | 214     | 6.72       | 6.73        |                 |
|      |               | 310     | 6.72       | 6.71        |                 |
|      |               | 400     | 6.05       | 6.05        |                 |
|      |               | 314     | 5.57       | 5.56        |                 |

Table S3. X-ray diffraction data for 1[10]d at 70 °C.

Table S4. X-ray diffraction data for 1[10]e.

|      |               | Miller  | $d_{meas}$ | $d_{calcd}$ | Cell             |
|------|---------------|---------|------------|-------------|------------------|
| Temp | Phase         | indices | /Å         | /Å          | parameters       |
| /°C  |               | hkl     | obs        | calcd       | /Å               |
|      |               |         |            |             |                  |
| 65   | $Col_{h(3D)}$ | 100     | 24.01      | 24.01       | a = 27.72        |
|      |               | 101     | 20.34      | 20.34       | <i>c</i> = 38.26 |
|      |               | 102     | 14.95      | 14.96       |                  |
|      |               | 110     | 13.88      | 13.86       |                  |
|      |               | 111     | 13.05      | 13.03       |                  |
|      |               | 201     | 11.47      | 11.45       |                  |
|      |               | 210     | 9.08       | 9.08        |                  |
|      |               | 211     | 8.85       | 8.83        |                  |
|      |               | 212     | 8.21       | 8.20        |                  |
|      |               | 300     | 8.02       | 8.00        |                  |
|      |               | 213     | 7.40       | 7.39        |                  |
|      |               | 220     | 6.96       | 6.93        |                  |
|      |               | 310     | 6.68       | 6.66        |                  |
|      |               | 400     | 6.02       | 6.00        |                  |
|      |               |         |            |             |                  |

|      |               | Miller  | $d_{meas}$ | $d_{calcd}$ | Cell             |
|------|---------------|---------|------------|-------------|------------------|
| Temp | Phase         | indices | /Å         | /Å          | parameters       |
| ∕°C  |               | hkl     | obs        | calcd       | /Å               |
|      |               |         |            |             |                  |
| 90   | $Col_{h(3D)}$ | 100     | 24.47      | 24.47       | a = 27.72        |
|      |               | 101     | 21.75      | 21.75       | <i>c</i> = 38.26 |
|      |               | 102     | 17.03      | 17.04       |                  |
|      |               | 110     | 14.14      | 14.12       |                  |
|      |               | 111     | 13.55      | 13.54       |                  |
|      |               | 201     | 11.86      | 11.85       |                  |
|      |               | 202     | 10.86      | 10.87       |                  |
|      |               | 210     | 9.26       | 9.25        |                  |
|      |               | 211     | 9.09       | 9.08        |                  |
|      |               | 212     | 8.62       | 8.62        |                  |
|      |               | 300     | 8.17       | 8.15        |                  |
|      |               | 213     | 7.99       | 7.98        |                  |
|      |               | 302     | 7.72       | 7.71        |                  |
|      |               | 303     | 7.26       | 7.25        |                  |
|      |               | 220     | 7.06       | 7.06        |                  |
|      |               | 310     | 6.79       | 6.79        |                  |
|      |               | 223     | 6.46       | 6.45        |                  |
|      |               | 400     | 6.14       | 6.12        |                  |
|      |               | 320     | 5.63       | 5.61        |                  |
|      |               |         |            |             |                  |

 Table S5. X-ray diffraction data for 1[10]f.

# 3. a-FMO contours

Contours of  $\alpha$ -FMOs are shown in Fig. S3.





## 4. Partial data for TD-DFT calculation (B3LYP/6-31G(d,p)) for 1[1]

1[1]a Excited State 1: 2.062-A 2.0457 eV 606.07 nm f=0.0010 <S\*\*2>=0.812 192B ->194B -0.37502 193B ->194B 0.91979 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -5002.80596109Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: 2.063-A 2.0755 eV 597.38 nm f=0.0003 <S\*\*2>=0.814 191B ->194B 0.99310 2.1024 eV 589.73 nm f=0.0157 Excited State 3: 2.042-A <S\*\*2>=0.792 192B ->194B 0.92314 193B ->194B 0.37741 4: 2.040-A 2.1163 eV 585.84 nm f=0.0524 Excited State <S\*\*2>=0.790 194A ->195A -0.16144184B ->194B -0.28351190B ->194B 0.92868 Excited State 5: 2.113-A 2.3260 eV 533.03 nm f=0.0139 <S\*\*2>=0.866 183B ->194B 0.19690 188B ->194B 0,96046 2.3418 eV 529.44 nm f=0.0272 Excited State 6: 2.086-A <S\*\*2>=0.838 194A ->195A -0.13465 189B ->194B 0.97350

## 1[1]b

Excited State 1: 2.028-A 2.0192 eV 614.01 nm f=0.0731 <S\*\*2>=0.778 158A ->159A -0.12199 158B ->160A -0.10337 150B ->158B 0.11329 157B ->158B 0.96577

This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -2095.97900447 Copying the excited state density for this state as the 1-particle RhoCI density.

| Excited         | State          | 2: | 2.075-A  | 2.4130 | eV | 513.82 | nm | f=0.0480 |
|-----------------|----------------|----|----------|--------|----|--------|----|----------|
| <s**2>=0</s**2> | .827           |    |          |        |    |        |    |          |
| 158A            | <b>-</b> >159A |    | -0.21386 |        |    |        |    |          |
| 151B            | <b>-</b> >158B |    | -0.15964 |        |    |        |    |          |
| 154B            | <b>-</b> >158B |    | -0.10715 |        |    |        |    |          |
| 155B            | <b>-</b> >158B |    | 0.11502  |        |    |        |    |          |
| 156B            | ->158B         |    | 0.92556  |        |    |        |    |          |

| Excited State<br><s**2>=0.874<br/>158A -&gt;161A<br/>152B -&gt;158B<br/><b>155B -&gt;158B</b><br/>156B -&gt;158B</s**2>                                                   | 3:         | 2.121-A<br>-0.10493<br>0.14003<br><b>0.95141</b><br>-0.12615                             | 2.4543 eV | 505.17 nm | f=0.0432 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------|-----------|-----------|----------|
| Excited State<br><s**2>=0.812<br/><b>154B -&gt;158B</b><br/>156B -&gt;158B</s**2>                                                                                         | 4:         | 2.061-A<br><b>0.98271</b><br>0.11600                                                     | 2.4845 eV | 499.03 nm | f=0.0016 |
| Excited State<br><s**2>=0.814<br/>152B -&gt;158B<br/>153B -&gt;158B<br/>155B -&gt;158B</s**2>                                                                             | 5:         | 2.063-A<br>0.83172<br>0.51881<br>-0.15783                                                | 2.5311 eV | 489.84 nm | f=0.0076 |
| Excited State<br><s**2>=0.799<br/>152B -&gt;158B<br/>153B -&gt;158B</s**2>                                                                                                | 6 <b>:</b> | 2.048-A<br>-0.52395<br><b>0.84328</b>                                                    | 2.5765 eV | 481.21 nm | f=0.0001 |
| Excited State<br><s**2>=0.800<br/>144B -&gt;158B<br/>147B -&gt;158B<br/>149B -&gt;158B<br/>150B -&gt;158B<br/>151B -&gt;158B<br/>154B -&gt;158B<br/>156B -&gt;158B</s**2> | 7:         | 2.049-A<br>-0.13496<br>-0.31954<br>0.12092<br>-0.23389<br>0.85417<br>-0.10152<br>0.15774 | 2.7375 eV | 452.91 nm | f=0.0069 |

## 1[1]c

1.9656 eV 630.78 nm f=0.0597 Excited State 1: 2.026-A <S\*\*2>=0.776 170A ->171A -0.100045 162B ->170B 0.12621 169B ->170B 0.96559 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -3064.92111189 Copying the excited state density for this state as the 1particle RhoCI density. 2: 2.078-A 2.3174 eV 535.01 nm f=0.0529 Excited State <S\*\*2>=0.830 170A ->171A 0.13680 161B ->170B 0.10648 166B ->170B 0.10625 167B ->170B -0.65912 168B ->170B 0.69312

| Excited S         | State   | 3:   | 2.091-A        | 2.3508  | 3 eV  | 527.42   | 2 nm  | f=0.0103                     |
|-------------------|---------|------|----------------|---------|-------|----------|-------|------------------------------|
| <s**2>=0.8</s**2> | 343     |      |                |         |       |          |       |                              |
| 165B <b>-</b>     | ->170B  |      | -0.30728       |         |       |          |       |                              |
| 167B -            | ->170B  |      | 0.64834        |         |       |          |       |                              |
| 168B -            | ->170B  |      | 0.67073        |         |       |          |       |                              |
| Excited S         | State   | 4 •  | 2.065-A        | 2.4031  | ρV    | 515.94   | lnm   | f=0.0092                     |
| <\$**2>=0.8       | 816     |      | 2.003 11       | 2.1001  |       | 515.5    |       | 1 0.0052                     |
| 164B -            | ->170B  |      | -0.10479       |         |       |          |       |                              |
| 165B -            | ->170B  |      | 0.93130        |         |       |          |       |                              |
| 167B -            | ->170B  |      | 0.28536        |         |       |          |       |                              |
| 168B -            | ->170B  |      | 0.15511        |         |       |          |       |                              |
| 1005              | 1100    |      | 0.13311        |         |       |          |       |                              |
| Excited S         | State   | 5:   | 2.050-A        | 2.4585  | ō eV  | 504.31   | nm    | f=0.0102                     |
| <s**2>=0.8</s**2> | 301     |      |                |         |       |          |       |                              |
| 164B -            | ->170B  |      | 0.81843        |         |       |          |       |                              |
| 165B -            | ->170B  |      | 0.10050        |         |       |          |       |                              |
| 166B -            | ->170B  |      | -0.54151       |         |       |          |       |                              |
| Excited S         | State   | 6:   | 2.086-A        | 2.4948  | 3 eV  | 496.98   | 8 nm  | f=0.0026                     |
| <s**2>=0.8</s**2> | 338     |      |                |         |       |          |       |                              |
| 162B -            | ->170B  |      | -0.10932       |         |       |          |       |                              |
| 164B -            | ->170B  |      | 0.55103        |         |       |          |       |                              |
| 166B -            | ->170B  |      | 0.79953        |         |       |          |       |                              |
|                   |         | _    | 0.045.0        | 0 600   |       | 461 16   |       | <b>C D D D D D D D D D D</b> |
| Excited S         | state   | /:   | 2.045-A        | 2.6883  | s ev  | 461.19   | ) nm  | f=0.0032                     |
| <s**2>=0./</s**2> | 96      |      | 0 1 6 7 4 0    |         |       |          |       |                              |
| 158B -            | ->170B  |      | -0.16/49       |         |       |          |       |                              |
| 159B -            | ->170B  |      | 0.36856        |         |       |          |       |                              |
| 161B -            | ->1/0B  |      | 0.76239        |         |       |          |       |                              |
| 162B -            | ->170B  |      | 0.33580        |         |       |          |       |                              |
| 163B -            | ->170B  |      | -0.22405       |         |       |          |       |                              |
| 166B -            | ->170B  |      | 0.12215        |         |       |          |       |                              |
| 16/B -            | ->1/0B  |      | 0.1165/        |         |       |          |       |                              |
| 1d[1]             |         |      |                |         |       |          |       |                              |
| Excited St        | ate     | 1:   | 2.051-A        | 2.0722  | eV    | 598.31   | nm    | f=0.1094                     |
| <s**2>=0.8</s**2> | 302     |      |                |         |       |          |       |                              |
| 170A -            | ->171A  |      | -0.13870       |         |       |          |       |                              |
| 162B -            | ->170B  |      | 0.15620        |         |       |          |       |                              |
| 169B -            | ->170B  |      | 0.95268        |         |       |          |       |                              |
| This stat         | e for   | opti | mization and   | or seco | ond-c | order co | orrec | ction.                       |
| Total Ene         | ergy, E | (TD- | HF/TD-KS) =    | -3064.9 | 91744 | 100      |       |                              |
| Copying t         | he exc  | ited | l state densit | y for t | his   | state a  | as th | ne 1-                        |
| particle F        | RhoCI d | ensi | ty.            |         |       |          |       |                              |
|                   |         |      |                |         |       |          |       |                              |

| Excited State       | 2:         | 2.077-A  | 2.3594 eV | 525.48 nm | f=0.0252 |
|---------------------|------------|----------|-----------|-----------|----------|
| <s**2>=0.829</s**2> |            |          |           |           |          |
| 170A ->171A         |            | -0.11459 |           |           |          |
| 165B ->170B         |            | -0.33336 |           |           |          |
| 166B ->170B         |            | 0.59988  |           |           |          |
| 168B ->170B         |            | 0.68593  |           |           |          |
|                     |            |          |           |           |          |
| Excited State       | 3:         | 2.062-A  | 2.3895 eV | 518.86 nm | f=0.0196 |
| <s**2>=0.813</s**2> |            |          |           |           |          |
| 170A ->171A         |            | -0.12203 |           |           |          |
| 165B ->170B         |            | 0.76209  |           |           |          |
| 166B ->170B         |            | -0.26231 |           |           |          |
| 168B ->170B         |            | 0.55569  |           |           |          |
|                     |            |          |           |           |          |
| Excited State       | 4:         | 2.076-A  | 2.4364 eV | 508.89 nm | f=0.0136 |
| <s**2>=0.827</s**2> |            |          |           |           |          |
| 170A ->171A         |            | 0.19281  |           |           |          |
| 164B ->170B         |            | 0.35388  |           |           |          |
| 165B ->170B         |            | 0.47831  |           |           |          |
| 166B ->170B         |            | 0.63992  |           |           |          |
| 167B ->170B         |            | -0.15284 |           |           |          |
| 168B ->170B         |            | -0.34637 |           |           |          |
|                     |            |          |           |           |          |
| Excited State       | 5 <b>:</b> | 2.070-A  | 2.4689 eV | 502.17 nm | f=0.0122 |
| <s**2>=0.821</s**2> |            |          |           |           |          |
| 164B ->170B         |            | 0.92325  |           |           |          |
| 165B ->170B         |            | -0.21577 |           |           |          |
| 166B ->170B         |            | -0.26740 |           |           |          |
|                     | _          |          |           |           |          |
| Excited State       | 6:         | 2.043-A  | 2.5320 eV | 489.67 nm | f=0.0042 |
| <s**2>=0.794</s**2> |            |          |           |           |          |
| 164A ->171A         |            | -0.10052 |           |           |          |
| 170A ->171A         |            | -0.45989 |           |           |          |
| 162B ->170B         |            | 0.24131  |           |           |          |
| 166B ->170B         |            | 0.22386  |           |           |          |
| 167B ->170B         |            | 0.76931  |           |           |          |
| 168B ->170B         |            | -0.17918 |           |           |          |
|                     |            |          |           |           |          |
| 1e[1]               |            |          |           |           |          |
| Excited State       | 1:         | 2.055-A  | 2.0470 eV | 605.69 nm | f=0.0963 |
| <s**2>=0.805</s**2> |            |          |           |           |          |
| 182A ->183A         |            | -0.11942 |           |           |          |
| 173B ->182B         |            | 0.19487  |           |           |          |
| 177B ->182B         |            | 0.17639  |           |           |          |

-0.15938

180B ->182B

181B ->182B 0.92122 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -4033.85816745Copying the excited state density for this state as the 1particle RhoCI density. Excited State 2: 2.077-A 2.2127 eV 560.33 nm f=0.0130 <S\*\*2>=0.829 177B ->182B -0.17248 179B ->182B -0.21704180B ->182B 0.91712 0.21408 181B ->182B 2.052-A 2.3153 eV 535.51 nm f=0.0148 Excited State 3: <S\*\*2>=0.803 176B ->182B -0.32462177B ->182B 0.56653 178B ->182B 0.29515 179B ->182B 0.60515 180B ->182B 0.28610 Excited State 4: 2.058-A 2.3328 eV 531.49 nm f=0.0028 <S\*\*2>=0.809 176B ->182B 0.87178 0.11872 178B ->182B 179B ->182B 0.45662 Excited State 5: 2.083-A 2.3621 eV 524.89 nm f=0.0176 <S\*\*2>=0.835 173B ->182B -0.11925 176B ->182B 0.32863 177B ->182B 0.67897 178B ->182B 0.19478 179B ->182B -0.57600 181B ->182B -0.11738 Excited State 6: 2.045-A 2.4245 eV 511.38 nm f=0.0061 <S\*\*2>=0.795 182A ->183A -0.17279 173B ->182B 0.17363 177B ->182B -0.29491 178B ->182B 0.89509 179B ->182B -0.13599 7: 2.030-A 2.6129 eV 474.50 nm f=0.0037 Excited State <S\*\*2>=0.781

| 176A | ->183A | -0.14223 |
|------|--------|----------|
| 182A | ->183A | 0.66800  |
| 169B | ->182B | 0.10135  |
| 170B | ->182B | -0.15862 |
| 171B | ->182B | 0.14837  |
| 172B | ->182B | 0.18732  |
| 173B | ->182B | -0.47388 |
| 174B | ->182B | 0.10463  |
| 175B | ->182B | 0.15035  |
| 177B | ->182B | -0.19943 |
| 178B | ->182B | 0.18923  |
| 180B | ->182B | -0.16608 |
| 181B | ->182B | 0.18493  |

### 1f[1]

Excited State 1: 2.019-A 1.9102 eV 649.07 nm f=0.0325 <S\*\*2>=0.769 182A ->184A 0.10392 173B ->182B 0.13331 181B ->182B 0.96748 This state for optimization and/or second-order correction. Total Energy, E(TD-HF/TD-KS) = -4033.86347112 Copying the excited state density for this state as the 1particle RhoCI density. Excited State 2: 2.087-A 2.1927 eV 565.44 nm f=0.0074

| EXCILCU DUULE       | 2.         | 2.007-A  | 2.1727 60 | 505.44 1111 | 1-0.0074 |
|---------------------|------------|----------|-----------|-------------|----------|
| <s**2>=0.839</s**2> |            |          |           |             |          |
| 180B ->182B         |            | 0.98430  |           |             |          |
| Excited State       | 3:         | 2.088-A  | 2.2688 eV | 546.49 nm   | f=0.0150 |
| <s**2>=0.840</s**2> |            |          |           |             |          |
| 177B ->182B         |            | 0.16754  |           |             |          |
| 179B ->182B         |            | 0.96771  |           |             |          |
| Excited State       | 4:         | 2.040-A  | 2.3272 eV | 532.76 nm   | f=0.0111 |
| <s**2>=0.791</s**2> |            |          |           |             |          |
| 176B ->182B         |            | 0.94343  |           |             |          |
| 177B ->182B         |            | -0.22535 |           |             |          |
| 178B ->182B         |            | 0.23171  |           |             |          |
| Excited State       | 5 <b>:</b> | 2.075-A  | 2.3915 eV | 518.44 nm   | f=0.0121 |
| <s**2>=0.827</s**2> |            |          |           |             |          |
| 173B ->182B         |            | -0.10209 |           |             |          |
| 177B ->182B         |            | 0.63171  |           |             |          |
| 178B ->182B         |            | 0.73518  |           |             |          |

| 179B                                                                                       | ->182B                                                                              |            | -0.16225                                                                    |        |    |        |    |          |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------|--------|----|--------|----|----------|
| Excited                                                                                    | State                                                                               | 6 <b>:</b> | 2.075-A                                                                     | 2.3963 | eV | 517.39 | nm | f=0.0039 |
| <s**2>=0.</s**2>                                                                           | 826                                                                                 |            |                                                                             |        |    |        |    |          |
| 170B                                                                                       | ->182B                                                                              |            | -0.11477                                                                    |        |    |        |    |          |
| 171B                                                                                       | ->182B                                                                              |            | 0.10840                                                                     |        |    |        |    |          |
| 176B                                                                                       | ->182B                                                                              |            | 0.31818                                                                     |        |    |        |    |          |
| 177B                                                                                       | ->182B                                                                              |            | 0.68620                                                                     |        |    |        |    |          |
| 178B                                                                                       | ->182B                                                                              |            | -0.60514                                                                    |        |    |        |    |          |
|                                                                                            |                                                                                     |            |                                                                             |        |    |        |    |          |
|                                                                                            |                                                                                     |            |                                                                             |        |    |        |    |          |
| Excited                                                                                    | State                                                                               | 7 <b>:</b> | 2.049-A                                                                     | 2.6249 | eV | 472.33 | nm | f=0.0046 |
| Excited<br><s**2>=0.</s**2>                                                                | State<br>799                                                                        | 7 <b>:</b> | 2.049-A                                                                     | 2.6249 | eV | 472.33 | nm | f=0.0046 |
| Excited<br><s**2>=0.<br/>170B</s**2>                                                       | State<br>.799<br>->182B                                                             | 7 <b>:</b> | 2.049-A<br>0.57246                                                          | 2.6249 | eV | 472.33 | nm | f=0.0046 |
| Excited<br><s**2>=0.<br/>170B<br/>171B</s**2>                                              | State<br>799<br>->182B<br>->182B                                                    | 7:         | 2.049-A<br>0.57246<br>-0.51760                                              | 2.6249 | eV | 472.33 | nm | f=0.0046 |
| Excited<br><s**2>=0.<br/>170B<br/>171B<br/>173B</s**2>                                     | State<br>799<br>->182B<br>->182B<br>->182B                                          | 7:         | 2.049-A<br>0.57246<br>-0.51760<br>0.48849                                   | 2.6249 | eV | 472.33 | nm | f=0.0046 |
| Excited<br><s**2>=0.<br/>170B<br/>171B<br/>173B<br/>174B</s**2>                            | State<br>.799<br>->182B<br>->182B<br>->182B<br>->182B                               | 7:         | 2.049-A<br>0.57246<br>-0.51760<br>0.48849<br>0.21853                        | 2.6249 | eV | 472.33 | nm | f=0.0046 |
| Excited<br><s**2>=0.<br/>170B<br/>171B<br/>173B<br/>174B<br/>175B</s**2>                   | State<br>.799<br>->182B<br>->182B<br>->182B<br>->182B<br>->182B<br>->182B           | 7:         | 2.049-A<br>0.57246<br>-0.51760<br>0.48849<br>0.21853<br>-0.14318            | 2.6249 | eV | 472.33 | nm | f=0.0046 |
| Excited<br><s**2>=0.<br/>170B<br/>171B<br/>173B<br/>174B<br/>175B<br/>175B<br/>177B</s**2> | State<br>.799<br>->182B<br>->182B<br>->182B<br>->182B<br>->182B<br>->182B<br>->182B | 7:         | 2.049-A<br>0.57246<br>-0.51760<br>0.48849<br>0.21853<br>-0.14318<br>0.16370 | 2.6249 | eV | 472.33 | nm | f=0.0046 |

### 5. Archive data for B3LYP/6-31G(d,p) geometry optimizations

#### 1[1]a

1\1\GINC-OCTOPUS\SP\UTD-B3LYP-FC\6-31G(d,p)\C29H33N401S9(2)\PIOTR\25-J an-2011\0\\#P UB3LYP/6-31G(d,p) TD(NStates=20) SCF=tight Geom(NoAngle, noDistance, check) #P guess=check\\1,3,5-(3,4,5-MeSphenyl)-6-oxoverda zyl, C1 at the DFT geom\\0,2\0,0,0.0282047059,-0.115285422,-0.09465078 99\C,0,0.0341840566,-0.0158818497,1.1184053093\N,0,1.2097727394,0.0339 011276,1.8840053605\N,0,1.2340553281,0.1850049261,3.2418620169\C,0,0.0 48203188,0.2620406031,3.84516135\N,0,-1.143869026,0.2099718223,3.25153 81388\N,0,-1.1338265255,0.0584091974,1.8935521975\C,0,-2.4298307769,0. 1060734125,1.2734936909\C,0,-2.7271343253,-0.7013505819,0.1760860063\C ,0,-4.0075412247,-0.6488514385,-0.3856674812\C,0,-4.9923138599,0.19663 30979,0.169240541\C,0,-4.6696778266,1.0070263069,1.279757275\C,0,-3.38 55819849,0.9572960119,1.8299860019\C,0,0.0556756319,0.3989309154,5.327 44636\C,0,-1.1534535099,0.4743015972,6.025603415\C,0,-1.1542485945,0.6 055537273,7.4180091668\C,0,0.0697690933,0.6598762735,8.1198555002\C,0, 1.2866297692,0.5802930479,7.4080520535\C,0,1.2717575348,0.4492071069,6 .0157040126\C,0,2.501389754,0.0545208574,1.2533969821\C,0,3.4792162582 ,0.8855578587,1.8019937329\C,0,4.7595346629,0.9085084079,1.2413020042\ C,0,5.0561092081,0.0916381292,0.1282705941\C,0,4.0494072474,-0.7330613 711,-0.418504681\C,0,2.7728041052,-0.7588496906,0.1536758186\S,0,-6.62 71232111,0.2791084541,-0.5617215003\S,0,6.6862605348,0.140041174,-0.61 6033722\H,0,-3.1062504279,1.5593719515,2.6814660276\S,0,-5.9491868546, 2.0722232786,1.9255112552\C,0,-5.1408147936,2.8423316662,3.3693073\H,0 ,-5.9055064081,3.4834902871,3.8128002351\H,0,-4.8322103338,2.098626375 7,4.1080419798\H,0,-4.2897339292,3.4627763604,3.0794249038\C,0,-7.4891 455773,-1.0407079487,0.3822540247\H,0,-7.5136681529,-0.7975797553,1.44 56970601\H,0,-8.510036824,-1.0742661012,-0.0049805729\H,0,-7.008246138 8,-2.0060160205,0.2163973514\S,0,-4.4649706139,-1.6364660507,-1.800664 5879\H,0,-1.9640660583,-1.3427671169,-0.23190469\H,0,2.1876515405,0.38 1412344,5.4471690179\C,0,-2.9382690651,-2.576204754,-2.1471581968\H,0, -2.1037004468,-1.9153001577,-2.3916871807\H,0,-2.6683405766,-3.2393203

656,-1.321760906\H,0,-3.1754215833,-3.1838435429,-3.023038255\S,0,2.80 18152764,0.6453765696,8.3525977679\C,0,4.0782320055,0.3320646277,7.085 9242997\H,0,5.0215800534,0.3042804772,7.6353902463\H,0,3.9305359804,-0 .6281766788,6.5867818037\H,0,4.1268229066,1.1369261066,6.3483957757\S, 0,0.0792919426,0.8788192227,9.8998544905\C,0,0.0636384143,-0.870203847 5,10.4616920193\H,0,0.0686461157,-0.8387241185,11.5535863105\H,0,-0.84 14781448,-1.3737119037,10.1185292538\H,0,0.9551868454,-1.3922614894,10 .1108238073\S,0,-2.6600067656,0.7018927474,8.3748782276\H,0,-2.0751590 978,0.4255118041,5.4645627751\H,0,1.9932053974,-1.38416112,-0.24801468 83\C,0,-3.9529310866,0.4153033619,7.1186648149\H,0,-3.9908360325,1.221 1065019,6.3815372498\H,0,-3.8292624298,-0.5477204422,6.6183531074\H,0, -4.8921384593,0.4070108377,7.6758104419\\$,0,4.4745492048,-1.7298931141 ,-1.8371082576\C,0,2.925744853,-2.6374273299,-2.1711405915\H,0,2.64874 77024,-3.2948979875,-1.3435722751\H,0,2.1032150372,-1.9591687025,-2.40 88467854\H,0,3.1429793178,-3.2497408205,-3.048929553\C,0,7.5282979477, -1.1973609942,0.3212018714\H,0,7.0260678353,-2.1524606859,0.1595133211 \H,0,8.5450784576,-1.2522040072,-0.0743274305\H,0,7.5665482906,-0.9547 109069,1.3843494595\S,0,6.0662234341,1.9467359545,1.8764617715\H,0,3.2 194669676, 1.4932908733, 2.6556526095\C, 0, 5.2858610184, 2.7335650972, 3.32 66366595\H,0,6.0673163762,3.3587287796,3.763699623\H,0,4.4455071774,3. 3715369396,3.0435830274\H,0,4.9679407495,1.9964770963,4.0680467273\\Ve rsion=EM64L-G09RevA.02\State=2-A\HF=-5002.8811391\S2=0.773538\S2-1=0.\ S2A=0.750252\RMSD=8.579e-09\PG=C01 [X(C29H33N401S9)]\\

#### 1[1]b

 $1\1\GINC-OCTOPUS\FOpt\UB3LYP\6-31G(d,p)\C29H33N4O10(2)\PIOTR\16-Nov-20$ 11\0\\#P B3LYP/6-31G(d,p) FOpt Geom(NoAngle, noDistance) fcheck freq=n oraman\\1,3,5-(3,4,5-MeOphenyl)-6-oxoverdazyl, C1\\0,2\0,-0.0621290594 ,-0.5197023953,0.0730087124\C,-0.024801063,-0.2280759499,1.2564537525\ N,1.1666267504,-0.1400466245,1.9913766149\N,1.2256409684,0.2086402802, 3.3129166548\C,0.0568983977,0.4234807479,3.9155208874\N,-1.1480708619, 0.3515544799,3.3509420331\N,-1.1699541074,0.0515776475,2.016747988\C,-2.4874435072,-0.0712729003,1.4543303311\C,-2.7474635592,0.3202968131,0 .1388263337\C,-4.0529924142,0.2125388405,-0.3508282226\C,-5.0927302628 ,-0.2635614568,0.4669578281\C,-4.8034803184,-0.6544762729,1.7863624197 \C,-3.5021076976,-0.55328083,2.2861700673\C,0.1012886246,0.7796759617, 5.357363623\C,-1.0468675288,1.2791738755,5.9835667064\C,-1.0038580246, 1.6180853306,7.33919354\C,0.1885866621,1.4692411052,8.0701739334\C,1.3 308737938,0.9532410126,7.4318067826\C,1.2909413161,0.6134512937,6.0770 108702\C,2.447951363,-0.3065343764,1.3604719719\C,3.5040245383,0.48220 01352,1.8260099935\C,4.7746348522,0.3210187438,1.2662880949\C,4.986448 412,-0.6110257577,0.2349136431\C,3.9096319767,-1.3980230882,-0.2092187 257\C, 2.6370426581, -1.2558304547, 0.3528503832\0, -6.384303573, -0.302071 2307,0.0134842806\0,6.2155742801,-0.6984720803,-0.3625153785\H,-3.2594 615007,-0.833193218,3.3003759832\0,-5.8628106999,-1.1275027158,2.50101 97412\C,-5.6395421623,-1.516552129,3.8467072505\H,-6.6078784584,-1.844 5231107,4.2271903197\H,-4.9237144585,-2.3456033809,3.9180058309\H,-5.2 768127177,-0.6787718051,4.4557839884\C,-6.7019301346,-1.4362707585,-0. 7964157809\H,-6.5635863573,-2.3701473221,-0.2379779904\H,-7.754333513, -1.3326383048,-1.0685300009\H,-6.0920370419,-1.4566537354,-1.706182194 1\0,-4.4205053524,0.5536451934,-1.6187002579\H,-1.9463442974,0.6799289 666,-0.4853841489\H,2.1587815696,0.2177042726,5.5686411309\C,-3.419650 5359,1.0506145504,-2.4961871604\H,-2.983405881,1.9851072408,-2.1221753 282\H,-2.6181848301,0.3184399905,-2.65378394\H,-3.9246051254,1.2448131 679,-3.4433461442\0,2.4302930289,0.8205012331,8.2293951419\C,3.6245649 091,0.3288502347,7.6418910241\H,4.3680223183,0.3180423512,8.4401982064 \H,3.4978115749,-0.6888772737,7.251331358\H,3.9743866358,0.9805977135, 6.8312920734\0,0.2448324496,1.8756265623,9.3770080513\C,0.0432855999,0 .8351866586,10.3352888694\H,0.1126515567,1.3058815742,11.3181707676\H, -0.9486012697,0.3810982556,10.2216851848\H,0.8153387963,0.0621267764,1 0.2487663736\0,-2.0626219445,2.1059506786,8.046029704\H,-1.9502232068, 1.3961308255,5.4016717511\H,1.8063767809,-1.8483451309,0.0071154729\C, -3.278778749,2.3326533031,7.3511328552\H,-3.1502902192,3.0548061607,6. 535385953\H,-3.6933307207,1.402411379,6.9413708113\H,-3.9721607834,2.7 407909544,8.0878224526\0,4.2085312688,-2.2866131383,-1.1993899532\C,3. 1514755489,-3.0663240869,-1.7409975456\H,2.7164054755,-3.7376666895,-0 .9897309058\H,2.3584512048,-2.4348712146,-2.1590511675\H,3.5990716253, -3.6616294075,-2.5379586516\C,7.0270886939,-1.7840536956,0.090877702\H ,6.5505615925,-2.7487091902,-0.1156653992\H,7.9648933466,-1.7176513659 ,-0.4645100841\H,7.2364758588,-1.6980937703,1.1642033257\0,5.874223005 ,1.0284194143,1.6493332333\H,3.320145299,1.1883349643,2.6216216972\C,5 .7137808375,2.0236798417,2.6477541952\H,6.6993194643,2.4709148746,2.78 43068562\H,5.0045397469,2.8003398688,2.3354792518\H,5.376683156,1.5944 685872,3.6002269771\\Version=EM64L-G09RevA.02\State=2-A\HF=-2096.05321 03\S2=0.772626\S2-1=0.\S2A=0.750245\RMSD=3.626e-09\RMSF=1.600e-06\Dipo le=0.1055986,-1.1993507,0.2654743\Quadrupole=-2.3578312,2.2960605,0.06 17708,1.4339123,3.98176,-2.9366495\PG=C01 [X(C29H33N4010)]\\@

#### 1[1]c

 $1\1\GINC-OCTOPUS\FOpt\UB3LYP\6-31G(d,p)\C29H33N407S3(2)\PIOTR\20-Aug-2$ 013\0\\#P B3LYP/6-31G(d,p) FOpt Geom(NoAngle, noDistance) fcheck\\1-(3 ,4,5-MeOphenyl)-3-(3,4,5-MeOphenyl)-5-(3,4,5-MeSphenyl)-6-oxoverdazyl \0,2\0,0.0869327903,-0.4800583921,0.1030521906\C,0.109680264,-0.258109 8435,1.3002635168\N,1.292617213,-0.2463984304,2.0553246609\N,1.3513040 236,0.0518044637,3.389888133\C,0.1819020704,0.2695042002,3.9895518379\ N,-1.0185383142,0.2510086391,3.4080052172\N,-1.0362577376,0.0139294847 ,2.062652975\C,-2.3507336534,-0.0470862808,1.4821096116\C,-2.583877089 3,0.4044183196,0.1808267318\C,-3.8860388161,0.3528530128,-0.3267464336 \C,-4.9480379348,-0.1268038432,0.4600659061\C,-4.6852095746,-0.5782694 501,1.7658638647\C,-3.3875455621,-0.5339546987,2.283254669\C,0.2168575 013,0.5636243794,5.4447962462\C,-0.9256722284,1.0695006377,6.076692663 7\C,-0.889066301,1.3537413047,7.4441294401\C,0.2853689032,1.1324836297 ,8.1868789089\C,1.4218830159,0.6099784822,7.5423430321\C,1.3909786182, 0.3341711692,6.1720649765\C,2.5695114224,-0.4313539734,1.4286763754\C, 3.6493579719,0.3027148504,1.9224989739\C,4.9238282374,0.1405834325,1.3 718779116\C,5.1233946584,-0.7770661184,0.3128598091\C,4.0251740986,-1. 5300940509,-0.1542475613\C,2.7515177191,-1.3531316136,0.3954440871\O,-6.2343520203,-0.1115406476,-0.0074159275\H,-3.1653738294,-0.8626164394 ,3.2873643976\0,-5.7651586005,-1.0493920861,2.449560268\C,-5.566355298 3,-1.5085441437,3.7770287901\H,-6.5474432421,-1.8255233747,4.133239469 1\H,-4.8755489673,-2.3606794175,3.8140247541\H,-5.1854136691,-0.711666 0972,4.4284441685\C,-6.5710633728,-1.1950243476,-0.8778348868\H,-6.465 4098962,-2.1588090685,-0.365079459\H,-7.6164602285,-1.0486822751,-1.15 68664456\H,-5.949465479,-1.1862812275,-1.7795427159\O,-4.229307401,0.7 560968031,-1.5825201347\H,-1.7664854926,0.7670177862,-0.4198920019\H,2 .2536513255,-0.0679604771,5.6599301268\C,-3.203359981,1.2508741832,-2. 4327153003\H,-2.7410359784,2.1563271261,-2.0206202524\H,-2.4253555811, 0.4983295733,-2.6095071985\H,-3.6922517254,1.4959199691,-3.3764268669\ 0,2.5034461087,0.405224751,8.3454673983\C,3.688724284,-0.0997701319,7. 7516971037\H,4.4183209334,-0.1755066996,8.5591222506\H,3.533087351,-1. 0924608365,7.31037184\H,4.0749690932,0.5772704646,6.9789221891\O,0.356 2478298,1.4716213371,9.5110510295\C,-0.2504185061,0.5378791219,10.4075 548328\H,-0.0995241333,0.9375365258,11.4123736201\H,-1.3237897296,0.44 08570444,10.2124691129\H,0.229398842,-0.4457701532,10.3345594242\0,-1. 9403582424,1.8546512608,8.1558845932\H,-1.8168324436,1.2397799216,5.48 93338006\H,1.9231195353,-1.9318467232,0.0162509632\C,-3.1381806697,2.1

558022751,7.4561170886\H,-2.9703756984,2.9042933784,6.6720948238\H,-3. 5820740075,1.2592006282,7.0046311192\H,-3.8251189427,2.5611200241,8.20 02430076\H,3.4682285555,0.9892360929,2.7359792876\S,6.3329523246,1.079 8729086,1.9446999759\S,6.7748908292,-0.9751999249,-0.3625787401\S,4.14 73713378,-2.6951304876,-1.5214969532\C,5.5968126412,2.1785408243,3.204 7991276\H,4.8343067963,2.8357387085,2.7802796312\H,5.1839121743,1.6182 85176,4.0471078035\H,6.4272494594,2.7899629185,3.5643086355\C,6.651959 456,0.055011804,-1.8756421204\H,5.9041953447,-0.3582405972,-2.55400315 64\H,6.4151798349,1.0881114495,-1.6159739651\H,7.6355356562,0.01787424 74,-2.3496889346\C,5.0546467214,-4.0895304065,-0.7510444298\H,6.061059 7915,-3.7832228558,-0.4636797926\H,4.5068246961,-4.4768436565,0.110056 6321\H,5.1147819183,-4.8665885398,-1.5168347278\\Version=EM64L-G09RevC .01\State=2-A\HF=-3064.9933458\S2=0.772959\S2-1=0.\S2A=0.750248\RMSD=5 .875e-09\RMSF=1.887e-06\Dipole=-0.3057323,-0.3859247,0.3450768\Quadrup ole=-3.9192783,2.4127344,1.5065439,6.5083461,-4.8723851,-9.2870465

#### 1[1]d

1\1\GINC-OCTOPUS\F0pt\UB3LYP\6-31G(d,p)\C29H33N407S3(2)\PIOTR\18-Aug-2 013\0\\#P B3LYP/6-31G(d,p) FOpt Geom(NoAngle, noDistance) fcheck\\1-(3 ,4,5-MeOphenyl)-3-(3,4,5-MeSphenyl)-5-(3,4,5-MeOphenyl)-6-oxoverdazyl \0,2\0,-0.0948893496,-0.494777948,0.1446276066\C,-0.0613065851,-0.1758 031841,1.3199569055\N,1.1259016757,-0.0948451323,2.0647385285\N,1.1767 070885,0.2852897537,3.3763529791\C,0.0070474764,0.5404522075,3.9578207 442\N,-1.1941383411,0.4809235444,3.3864331229\N,-1.2092919839,0.145948 0874,2.0612490606\C,-2.5222407875,0.0396235847,1.4847743343\C,-2.75875 07819,0.4236626843,0.1628168866\C,-4.059997375,0.3348631544,-0.3418675 379\C,-5.1177867578,-0.1146386781,0.4681410645\C,-4.8517580175,-0.4990 477659,1.794467785\C,-3.5545330597,-0.4168846307,2.3089469264\C,0.0467 909334,0.9330684534,5.3919214787\C,-1.1090054432,1.4066471299,6.019426 3949\C,-1.0898455081,1.7828346131,7.3668173281\C,0.1118326413,1.679053 2758,8.1085973648\C,1.2715065019,1.1863420909,7.4714894053\C,1.2344140 694,0.8250800544,6.1221331793\C,2.4104618052,-0.3120247917,1.454625254 2\C,3.4832371555,0.4529019589,1.9221931535\C,4.7541848107,0.2448895885 ,1.3803786378\C,4.9515276669,-0.7130305567,0.3696799062\C,3.8600375869 ,-1.4812652885,-0.0707075818\C,2.5836577577,-1.2861167935,0.4683165323 \0,-6.4036913241,-0.1323865736,-0.0008317314\0,6.1778204744,-0.8613750 724,-0.2208157721\H,-3.3297919603,-0.6939469786,3.328061075\O,-5.92767 71152,-0.9460067898,2.500242208\C,-5.7279522051,-1.3294051093,3.851461 0493\H,-6.7063848876,-1.6376479645,4.2221757073\H,-5.0274135691,-2.169 9445656,3.937468874\H,-5.358781505,-0.4931742252,4.4590260046\C,-6.736 9131667,-1.2725744688,-0.7965387984\H,-6.6304060114,-2.1994668982,-0.2 199414685\H,-7.7820163092,-1.1476034347,-1.0868605703\H,-6.1137036765, -1.32338284,-1.695977479\0,-4.4068213478,0.6717590773,-1.616085048\H,-6430748322\C,-3.3883243373,1.1475016458,-2.4854264302\H,-2.9414089289, 2.0768893135,-2.1114260195\H,-2.5974845429,0.4014070846,-2.6304971526\ H,-3.879834807,1.3445955352,-3.4389759019\H,-2.0120011326,1.4806076494 ,5.4301492688\H,1.7411781759,-1.8633211646,0.1254619893\O,4.1468693511 ,-2.4053868858,-1.0291043498\C,3.0773037526,-3.1769152173,-1.556099273 8\H,2.6156230363,-3.8096847827,-0.7872087179\H,2.3055569559,-2.5421706 358,-2.0080976961\H,3.5195730919,-3.8120357522,-2.3248026014\C,7.07143 55682,-1.7371513146,0.4703219372\H,6.6596776811,-2.7516683586,0.532404 6004\H,7.9931979419,-1.7580630627,-0.1146684543\H,7.2900450345,-1.3650 397147,1.4776942144\0,5.8699915658,0.9276959365,1.7611656312\H,3.31120 82212,1.1789602048,2.702269618\C,5.7351403752,1.927511827,2.7611513525 \H,6.7330893014,2.3446250233,2.9016506796\H,5.0517670673,2.7249730318, 2.4439990018\H,5.3810473819,1.5072831733,3.7107384564\S,-2.5369926959, 2.4193797606,8.202308283\s,0.0991439125,2.1302575349,9.8469852265\s,2.

8677084815,1.0725848359,8.297117872\C,-3.7708404441,2.502856494,6.8581 064218\H,-4.6647420814,2.9248779542,7.3224114343\H,-3.4493407813,3.161 6474886,6.0482851232\H,-4.0149027967,1.5137046451,6.4632413192\C,0.824 4014512,3.813471906,9.7728880625\H,0.8280903732,4.188136367,10.7991140 852\H,1.8477155174,3.7676818651,9.3976009535\H,0.2090715388,4.46721995 56,9.1526015644\C,2.6318073319,-0.3933771308,9.3725524995\H,1.86143175 95,-0.2011186913,10.1202658947\H,2.381156943,-1.2724207341,8.775847953 2\H,3.5899676878,-0.5587263266,9.8709669016\\Version=EM64L-G09RevC.01\ State=2-A\HF=-3064.9935939\S2=0.772528\S2-1=0.\S2A=0.75025\RMSD=9.998e -09\RMSF=2.956e-06\Dipole=-0.1674502,-0.5739845,-0.0790236\Quadrupole= -6.0389924,10.2157664,-4.176774,3.812212,7.4783169,3.5548653\PG=C01 [X (C29H33N407S3)]

#### 1[1]e

1\1\GINC-OCTOPUS\FOpt\UB3LYP\6-31G(d,p)\C29H33N4O4S6(2)\PIOTR\18-Aug-2 013\0\\#P B3LYP/6-31G(d,p) FOpt Geom(NoAngle, noDistance) fcheck\\1-(3 ,4,5-MeSphenyl)-3-(3,4,5-MeSphenyl)-5-(3,4,5-MeOphenyl)-6-oxoverdazyl\0,2\0,0.0795312448,-0.3946970763,0.1721400689\C,0.0984716635,-0.15450 69901,1.3648749539\N,1.2762305827,-0.1554691885,2.1306957421\N,1.32608 40651,0.1724720968,3.4569920642\C,0.1573605853,0.4339664925,4.03653988 86\N,-1.0386887345,0.4255402934,3.4492133148\N,-1.050818404,0.15085560 28,2.1118274982\C,-2.3618443369,0.0934573876,1.5223980527\C,-2.5809133 973,0.5245959117,0.2120231857\C,-3.880449969,0.477470791,-0.3035578702 \C,-4.9527670837,0.0260856744,0.4859500449\C,-4.7035265779,-0.40726695 05,1.8005706825\C,-3.4086257647,-0.3691264288,2.3251556136\C,0.1895379 071,0.770666902,5.4847018145\C,-0.9653022117,1.2362894029,6.1199282571 \C,-0.9529316411,1.5600155803,7.4810421292\C,0.2411700381,1.4127966785 ,8.2277749558\C,1.4004972546,0.9314808871,7.581656857\C,1.3694790141,0 .6201134016,6.219796636\C,2.5550441499,-0.4023410331,1.5268544676\C,3. 6612611792,0.272616286,2.0465093157\C,4.9369527682,0.0477267043,1.5208 404914\C,5.1092894721,-0.8682736922,0.4551878247\C,3.9839273626,-1.563 3311069,-0.0360266285\C,2.7107317075,-1.328101365,0.4925830377\O,-6.23 43908408,0.0504511636,0.0073068448\H,-3.1963961951,-0.6866619635,3.335 0162588\0,-5.7930636998,-0.8557183094,2.4836058649\C,-5.6097555933,-1. 2982758284,3.8191633774\H,-6.5962332949,-1.602916836,4.1708912696\H,-4 .9254913237,-2.1545583562,3.8740777324\H,-5.2294254064,-0.4947842644,4 .4630053693\C,-6.5949505994,-1.0730175493,-0.8009229279\H,-6.525715360 8,-2.0067197784,-0.2299037504\H,-7.6316651666,-0.9116896142,-1.1028953 752\H,-5.9627159716,-1.1378213144,-1.6932090717\0,-4.2107310258,0.8582 45178,-1.5688554523\H,-1.7560205769,0.8675543912,-0.3899348285\H,2.262 8168232,0.248016969,5.7354699276\C,-3.1728105494,1.3183164999,-2.42435 73334\H,-2.7008493306,2.2275724958,-2.0320068584\H,-2.4042046273,0.551 1082445,-2.5773939538\H,-3.6526703567,1.5463714531,-3.3768586252\H,-1. 8623302639,1.3453515901,5.5270730041\H,1.8635323191,-1.8653322494,0.09 5310467\H,3.5017561566,0.963225463,2.8607169077\S,6.3806849624,0.90386 77695,2.1333405165\S,6.7595659662,-1.1385822406,-0.1981445584\S,4.0702 146058,-2.7238893105,-1.409650723\C,5.6882086229,1.9831814238,3.434256 6361\H,4.9678413512,2.6997323569,3.0325420285\H,5.2382280264,1.4078354 7,4.2465847221\H,6.5462121971,2.5319910842,3.8283522619\C,6.7021174367 ,-0.1031331113,-1.711459342\H,5.9461892467,-0.4822783896,-2.4005853417 \H,6.5083088097,0.9394541117,-1.4540925241\H,7.6895166401,-0.183773198 4,-2.1719907114\C,4.9061160179,-4.1633841258,-0.6411786783\H,5.9206592 072,-3.903225126,-0.3377858342\H,4.3307422023,-4.5352296983,0.20865788 65\H,4.9430529865,-4.9344807848,-1.4144213508\S,-2.399092793,2.1816806 344,8.3287888358\s,0.2185641005,1.7932968254,9.9826537387\s,2.98922828 31,0.7724912564,8.413963128\C,-3.6207713693,2.3317524276,6.9793442596\ H,-4.5126916428,2.7480486137,7.4525007794\H,-3.2843040013,3.0159943979 ,6.1971674523\H,-3.8745963801,1.3611697822,6.5463053791\C,0.9514372758 ,3.4751299214,9.9823348685\H,0.9453057197,3.8087971349,11.0225676586\H ,1.9786601657,3.4405025063,9.6165473735\H,0.3451256062,4.1555127786,9. 3821312943\C,2.7334863411,-0.7334870844,9.4277540725\H,1.9589490624,-0 .5648486532,10.1768768858\H,2.4807081882,-1.5857154407,8.7942545889\H, 3.6865061751,-0.9264989773,9.9259784522\\Version=EM64L-G09RevC.01\Stat e=2-A\HF=-4033.9333935\S2=0.772905\S2-1=0.\S2A=0.750255\RMSD=3.039e-09 \RMSF=2.746e-06\Dipole=-0.4347406,0.0720259,-0.0435535\Quadrupole=-8.0 10213,8.8706763,-0.8604633,8.1241289,0.3454511,-2.0617092\PG=C01 [X(C2 9H33N404S6)]\\

#### 1[1]f

1\1\GINC-OCTOPUS\FOpt\UB3LYP\6-31G(d,p)\C29H33N4O4S6(2)\PIOTR\19-Aug-2 013\0\\#P B3LYP/6-31G(d,p) FOpt Geom(NoAngle, noDistance) fcheck\\1-(3 ,4,5-MeSphenyl)-3-(3,4,5-MeOphenyl)-5-(3,4,5-MeSphenyl)-6-oxoverdazyl\0,2\0,0.0673654934,-0.3638337654,-0.0256197189\C,0.0748876462,-0.1662 118346,1.1761099746\N,1.244405981,-0.179788957,1.9497896316\N,1.284153 4958,0.0880143682,3.2897010379\C,0.1068072763,0.3010050621,3.879805459 6\N,-1.0836186732,0.305879066,3.2790097851\N,-1.0797420142,0.100269980 7,1.9273203926\C,-2.3832055393,0.063368103,1.3264265249\C,-2.595957201 3,0.5274913446,0.0279676133\C,-3.8808049475,0.487791145,-0.5264145196\ C,-4.9697423109,0.0000340843,0.2343882187\C,-4.7384328838,-0.434207990 4,1.5573115736\C,-3.449513622,-0.4094890598,2.0948404652\C,0.123973872 4,0.5548185299,5.3422854172\C,-1.0381221331,1.0028411647,5.9820359807\ C,-1.0188671456,1.2436039549,7.3581860186\C,0.159070661,1.0396221845,8 .1008754161\C,1.3157495431,0.5753056484,7.447700035\C,1.3012400276,0.3 41150806,6.0696043661\C,2.5292437871,-0.3673924657,1.338176895\C,3.604 8159737,0.3625940192,1.8458650437\C,4.8851369084,0.1957442825,1.309598 268\C,5.0924988447,-0.722631409,0.2523628563\C,3.9969428211,-1.4704550 748,-0.2291241474\C,2.7178926991,-1.2883514067,0.3062943499\H,-3.27778 36711,-0.7483328334,3.1069641251\H,-1.7595157515,0.8969370997,-0.54112 46246\H,2.1792464773,-0.0179264612,5.5518359646\O,2.399071035,0.380541 7345,8.2506715059\C,3.5988437026,-0.0819121694,7.6511921505\H,4.323920 5114,-0.1673114221,8.4616617032\H,3.4662159907,-1.0635175613,7.1787872 586\H,3.976878104,0.6261322802,6.9024587557\0,0.2118445823,1.339292125 3,9.4347781527\C,-0.368642604,0.3595131273,10.299691085\H,-0.239673214 ,0.7361970327,11.3162992606\H,-1.4361840445,0.2303965736,10.0924328335 \H,0.146638858,-0.6039091657,10.2035618474\O,-2.0901484467,1.683542854 3,8.0788152672\H,-1.9322996544,1.1606543556,5.3960830603\H,1.891490619 1,-1.8639926943,-0.0823096867\C,-3.3041228571,1.9358067906,7.386372534 2\H,-3.1790571676,2.7146895628,6.624058707\H,-3.6965523432,1.028180744 9,6.9108137948\H,-4.0113741586,2.2819601965,8.1412292182\H,3.416743831 9,1.0498282708,2.6574811425\S,6.2913966307,1.1287787595,1.8981258567\S ,6.7517594216,-0.9306788169,-0.4011087016\S,4.1289782995,-2.6347719065 ,-1.5958179475\C,5.5442692396,2.2332445706,3.1465505454\H,4.7914362473 ,2.8935887292,2.7098616095\H,5.1171979654,1.6765411431,3.9841364994\H, 6.3729647647,2.840799348,3.516391253\C,6.6519526886,0.0881502826,-1.92 35962831\H,5.9098002487,-0.3263495611,-2.6072368121\H,6.4187981372,1.1 248299208,-1.675323466\H,7.6407981659,0.0409899958,-2.3855806799\C,5.0 171508308,-4.035966064,-0.8150209345\H,6.0217200239,-3.7365350427,-0.5 1451041\H,4.4557318972,-4.4207090665,0.0383764023\H,5.0819348078,-4.81 24378415,-1.5809857641\S,-6.0260268337,-1.142780478,2.5969886025\S,-6. 6091662474,-0.0071105522,-0.4970613153\s,-4.2000590338,1.0263726935,-2 .1994564586\C,-7.0063335329,0.3389760677,3.0492152825\H,-6.3811560073, 1.0753226014,3.5578635119\H,-7.4748021052,0.7746565763,2.1660188107\H, -7.7799186222,-0.0120489875,3.7364182222\C,-6.7340427404,-1.7556847154 ,-1.0379113361\H,-5.9428969906,-1.9913087785,-1.7515524471\H,-6.693184 2599,-2.4221133297,-0.1751050937\H,-7.7048930268,-1.8535640499,-1.5291 751363\C,-2.5253201894,1.4009901184,-2.8273173852\H,-2.0787568937,2.25 85429675,-2.3186046236\H,-1.8622335299,0.5356017898,-2.76131976\H,-2.6 714637156,1.6567094042,-3.8790040346\\Version=EM64L-G09RevC.01\State=2 -A\HF=-4033.9336692\S2=0.773683\S2-1=0.\S2A=0.75025\RMSD=5.621e-09\RMS F=1.315e-06\Dipole=0.1109692,0.0812729,0.3221373\Quadrupole=0.1276076, 1.8563627,-1.9839702,1.0208799,-6.6171911,-5.2830034\PG=C01 [X(C29H33N 404S6)]\\.

7

1\1\GINC-OCTOPUS\FOpt\UB3LYP\6-31G(2d,p)\C20H15N4O1(2)\PIOTR\24-Sep-20 13\0\\#P UB3LYP/6-31G(2d,p) FOpt freq(noraman, ReadIso) SCF=Direct #P Geom=(NoDistance,NoAngle) fcheck\\Diphenyl Ph oxoverdazyl, C2 symm\\0, 2\0,-0.0000001195,0.000000097,0.\C,-0.0000001237,0.000000026,1.21229 9\N,1.168904,0.,1.981875\N,1.186171,-0.027779,3.343929\C,-0.0000001331 ,-0.0000000135,3.945118\N,-1.1861712621,0.0277789801,3.3439289921\N,-1 .1689042527,-0.0000000039,1.9818749919\C,-2.460316,0.080132,1.363616\C ,-2.750996,-0.609957,0.183738\C,-4.030179,-0.523959,-0.358266\C,-5.018 1139998,0.2368860041,0.263009\C,-4.720682,0.91682,1.442658\C,-3.44713, 0.841553,1.99556\C,-0.0000001383,-0.0000000222,5.429338\C,-1.195187,-0 .174495,6.138605\C,-1.192503,-0.174197,7.529656\C,-0.0000001479,-0.000 0000386,8.230408\C,1.1925027089,0.174196931,7.5296560103\C,1.195186718 6,0.1744949473,6.1386050103\C,2.4603157516,-0.0801319966,1.3636160161\ C,3.4471297472,-0.841553004,1.9955600139\C,4.720681751,-0.9168199975,1 .4426580219\C,5.018113759,-0.2368859877,0.2630090319\C,4.0301787635,0. 5239590236,-0.358265966\C,2.7509957597,0.6099570173,0.1837380262\H,-3. 206424,1.360584,2.91391\H,-5.480343,1.513814,1.936376\H,-6.011879,0.29 8637,-0.167703\H,-4.252152,-1.063304,-1.273128\H,-1.988383,-1.199309,-0.302638\H,2.11837,0.314389,5.589932\H,2.124833,0.313178,8.067456\H,-0 .0000001517,-0.000000045,9.315657\H,-2.1248332948,-0.3131780753,8.0674 559816\H,-2.1183702776,-0.3143890462,5.5899319817\H,1.9883827631,1.199 309023,-0.3026379722\H,4.2521517698,1.0633040344,-1.2731279581\H,6.011 8787622,-0.2986369786,-0.1677029619\H,5.4803427476,-1.5138140033,1.936 3760201\H,3.2064237409,-1.3605840148,2.9139100062\\Version=EM64L-G09Re vC.01\State=2-A\HF=-1065.3828073\S2=0.772858\S2-1=0.\S2A=0.750235\RMSD =8.426e-09\RMSF=4.076e-06\Dipole=0.,0.,0.3011737\Quadrupole=7.884192,-7.2363581,-0.6478339,-1.7822696,0.,0.\PG=C02 [C2(H1C1C1C1C1C1),X(C16H1 4N4)]\\@

## 6. References

- 1 A. Jankowiak, P. Kaszynski *Beils. J. Org. Chem.* 2012, **8**, 275.
- 2 A. Nowak-Król, D. Gryko, D. T. Gryko *Chem. Asian J.* 2010, **5**, 904.
- 3 A. Jankowiak, D. Pociecha, H. Monobe, J. Szczytko, P. Kaszyński Chem.

Commun. 2012, 48, 7064

4 A. Jankowiak, Ż. Dębska, P. Kaszyński, J. Romański J. Sulfur Chem. 2012, 33, 1.