Supporting Information

Multifunctional All-TiO₂ Bragg Stacks Based on Blocking Layer-Assisted Spin Coating

Yun-Ru Huang[†], Jung Tae Park[‡], Jacob H. Prosser[†], Jong Hak Kim^{‡, *}, and Daeyeon Lee^{†, *}

[†] Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia,

Pennsylvania 19104, United States

^{*}Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, South Korea

Corresponding authors: jonghak@yonsei.ac.kr (J.H.K.), daeyeon@seas.upenn.edu (D.L.)

Table S1. Characteristics of the low- and high-refractive-index films prepared using optimized spin

coating conditions^a before and after calcination^b.

	Low refractive index Discoidal TiO ₂		High refractive index Spherical TiO ₂	
	Before	After	Before	After
Thickness (nm)	95.0 ± 2.3	89.2 ± 4.6	77.4 ± 1.2	66.3 ± 2.9
Refractive index	1.50 ± 0.01	1.44 ± 0.01	1.92 ± 0.01	1.95 ± 0.01

^a Spin coating at 4000rpm for 1 min at ambient lab conditions.

^b Calcination at 500 °C for 2 h.

Figure S1. Effect of the rotational speed of spin coating on the thickness of spherical TiO₂

nanoparticle films on glass slides.

Figure S2. Effect of nanoparticle concentration on the thickness of spherical TiO_2 nanoparticle films on glass slides at a rotational speed of 4000rpm.

Figure S3. Effect of nanoparticle concentration on the thickness of discoidal TiO_2 nanoparticle films on glass slides at a rotational speed of 4000rpm.

Figure S4. Effect of the total number of calcination processes on the transmittance spectra of 3-layer Bragg stacks on glass slides measured at normal incidence.

Figure S5. Cross sectional scanning electron microscopy (SEM) image of a 9-layer all-TiO₂ BS

manufactured using the blocking-layer assisted spin coating method.