Supporting information

In situ Nanostructuring Hybrid ZnO@CdS Nanowalls for Inverted Polymer Solar Cells

Kai Yuan¹, Lie Chen¹, Fan Li¹, Yiwang Chen^{*1,2}

¹Institute of Polymers/Department of Chemistry, Nanchang University, 999 Xuefu

Avenue, Nanchang 330031, China; ²Jiangxi Provincial Key Laboratory of New

Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031,

China

Figure S1 The water contact angle measurements of bare ZnO nanowall and hybrid ZOCS nanowalls with various CdS-layer thicknesses.

^{*} Corresponding author. Tel.: +86 791 83969562; fax: +86 791 83969561. *E-mail address*: ywchen@ncu.edu.cn (Y. Chen).

Figure S2 SEM images of bare ZnO nanowall and hybrid ZOCS nanowalls with various CdS-layer thicknesses.

Figure S3 Comparison of enhanced IPCE changes caused by *in situ* growth CdS layer on ZnO nanowall, polymer solar cells based on bare ZnO nanowall is a reference device.

Figure S4 Diffuse reflectance spectra of ITO/ZnO nanowall and ITO/ZOCS nanowalls with various CdS-layer thicknesses.

Figure S5 Absorption spectra of P3HT:PCBM active layer on bare ZnO nanowall and hybrid ZOCS nanowalls with various CdS-layer thicknesses.

Figure S6 Photoluminescence spectra of P3HT:PCBM active layer on bare ZnO nanowall and hybrid ZOCS nanowalls with various CdS-layer thicknesses.

Figure S7 XPS data of Cd 3d for the hybrid ZOCS nanowalls with various thicknesses of CdS layers.

Figure S8 XPS data of S 2p for the hybrid ZOCS nanowalls with various thicknesses

of CdS layers.