Supporting Information

Influence of Fluorine Substituents on the Film Dielectric Constant and Open-circuit Voltage in Organic Photovoltaics

Pinyi Yang,^{*a*} Mingjian Yuan,^{*a*} David F. Zeigler,^{*b*} Scott E. Watkins,^{*c*} Jason A. Lee,^{*b*} and Christine K. Luscombe*^{*a*}

^aDepartment of Materials Science and Engineering and Molecular Engineering and Sciences Institute, University of Washington, Box 352120, Seattle, WA 98195-2120, USA. E-mail: luscombe@uw.edu
^bDepartment of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
^cIan Wark Laboratory, CSIRO Molecular and Health Technologies, Clayton South, Victoria 3169, Australia

Figure S1 Optimized structures and calculated frontier orbitals for P0F, P1F and P2F.

Figure S2 Photoelectron spectroscopy in air of **P0F**, **P1F** and **P2F** films (the dash lines were added to help visualize the curve onsets, HOMO_{P0F}=-5.23 eV, HOMO_{P1F}=-5.30 eV and HOMO_{P2F}=-5.31 eV).

Dark Current Density and Modified Shockley Equation Fitting

Figure S3 *J-V* characteristics of ITO/PEDOT:PSS/polymer: $PC_{61}BM/Ca/Al$ under dark (Scatter) and simulation (Dot dash line) fitted according to the modified Shockley equation.

The ideality factor (*n*) and reverse saturation current density (J_0) were obtained by fitting the *J-V* characteristics of each device under dark with the modified Shockley equation:^{1,2}

$$J_{dark}(V) = J_0 \left\{ \exp\left[\frac{e(V - J_{dark}(V)r_s)}{nk_BT}\right] - 1 \right\}$$
(1)

where J_{dark} is the dark current density, J_0 is the reverse-bias saturation current density, e the elemental electron charge, $r_s = R_s \cdot \text{area of device the specific series resistance, } n$ the ideality

factor, k_B is the Boltzmann's constant and *T* the temperature. Furthermore, with *n* and J_0 obtained from fitting, V_{oc} of each device can be determined by:^{2,3}

$$V_{OC} = \frac{nk_BT}{e} \ln\left[\frac{-J_{ph}(V_{OC})}{J_0} + 1\right] \approx \frac{nk_BT}{e} \ln\left(\frac{J_{SC}}{J_C} + 1\right)$$

(2)

Table S1 below summarizes the fitting results of important parameters.

Table S1 Parameters of device obtained by fitting *J-V* characteristics under dark with modified Shockley equation

	$L(m \Lambda/am^2)$	n	J_{sc} $R_{sh}(k\Omega)$		V_{oc} (V)	
	J_0 (IIIA/CIII)		(mA/cm^2)		Simulated	measured
P0F:PCBM	3.74×10 ⁻¹³	1.54	6.37	20±4	0.835	0.832
P1F:PCBM	2.30×10 ⁻¹³	1.58	6.52	19±3	0.878	0.872
P2F:PCBM	4.03×10 ⁻¹⁴	1.51	6.84	22±3	0.912	0.914

Figure S4 Capacitance measurement of (a) P0F, (b) P1F and (c) P2F pure and blends film on 300 nm SiO_2 layer.

Reference:

- 1. S. M. Sze and Ng, *Physics of semiconductor devices*, Wiley-Interscience, Hoboken, N.J., 2007.
- 2. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett., 2004, 84, 3013.
- 3. X. Tong, B. E. Lassiter, and S. R. Forrest, Org. Electron., 2010, 11, 705.