Electronic Supplementary Information

Twisted intramolecular charge transfer, aggregation-induced emission, supramolecular self-assembly and optical waveguide of barbituric acid-functionalized tetraphenylethene

Erjing Wang,^{ab} Jacky W. Y. Lam,^{ab} Rongrong Hu,^{ab} Chuang Zhang,^c Yongsheng Zhao^c and Ben Zhong Tang *^{abd}

 ^a HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China. E-mail: <u>tangbenz@ust.hk</u>
^b Department of Chemistry, Institute of Molecular Functional Materials and Institute for Advanced Study, The Hong Kong University of Science & Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China

^c Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,

China

^d Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT), Guangzhou 510640, China

Contents

Fig. S1¹H NMR spectrum of TPE-HPh in CDCl₃.

Fig. S2 ¹³C NMR spectrum of TPE-HPh in CDCl₃.

Fig. S3 ¹H NMR spectrum of TPE-HPh-Bar in CDCl₃.

Fig. S4 ¹³C NMR spectrum of TPE-HPh-Bar in CDCl₃.

Fig. S5 (A) UV absorption and (B) PL emission spectra of TPE-HPh-Bar (10 μ M) in different solvents. Excitation wavelength (450 nm).

Fig. S6 (A) PL spectra of TPE-HPh-Bar in dichloromethane/hexane mixtures with different hexane fractions (f_{hex}). Concentration: 10 μ M; excitation wavelength: 478 nm. (B) Plot of relative PL intensity (I/I_0) and emission maximum versus the

composition of the dichloromethane/hexane mixture solution of TPE-HPh-Bar. I_0 = emission intensity in pure dichloromethane.

Fig. S7 SEM images of aggregates formed by slow evaporation of TPE-HPh-Bar solution in acetonitrile with a concentration of 1 μ M at room temperature.

Fig. S8 SEM images of micro and nano-structures formed by slow evaporation of TPE-HPh-Bar solutions (10 μ M) in DMSO/ethanol mixture (1:4 v/v) at room temperature in the presence of 10 equivalent of melamine.

Fig. S9 Nanostructures of TPE-HPh-Bar prepared from (A) 1,4-dioxane solution (100 μ M), (B) THF solution (100 μ M), (C) CH₃CN/H₂O (1:1, v/v), and (4) CH₃CN/H₂O (1:1, v/v) with the presence of 1 equivalent of melamine.

Fig. S1 ¹H NMR spectrum of TPE-HPh in CDCl₃.

Fig. S2 ¹³C NMR spectrum of TPE-HPh in CDCl₃.

Fig. S3 ¹H NMR spectrum of TPE-HPh-Bar in CDCl₃.

Fig. S4 ¹³C NMR spectrum of TPE-HPh-Bar in CDCl₃.

Fig. S5 (A) UV absorption and (B) PL emission spectra of TPE-HPh-Bar (10 μ M) in different solvents. Excitation wavelength (450 nm).

Fig. S6 (A) PL spectra of TPE-HPh-Bar in dichloromethane/hexane mixtures with different hexane fractions (f_{hex}). Concentration: 10 µM, excitation wavelength: 478 nm. (B) Plot of relative PL intensity (I/I_0) and emission maximum versus the composition of the dichloromethane/hexane mixture solution of TPE-HPh-Bar. I_0 = emission intensity in pure dichloromethane.

Fig. S7 SEM images of aggregates formed by slow evaporation of TPE-HPh-Bar solution in acetonitrile with a concentration of 1 μ M at room temperature.

Fig. S8 SEM images of micro and nano-structures formed by slow evaporation of TPE-HPh-Bar solutions (10 μ M) in DMSO/ethanol mixture (1:4 v/v) at room temperature in the presence of 10 equivalent of melamine.

Fig. S9 Nanostructures of TPE-HPh-Bar prepared from (A) 1,4-dioxane solution (100 μ M), (B) THF solution (100 μ M), (C) CH₃CN/H₂O (1:1, v/v), and (4) CH₃CN/H₂O (1:1, v/v) with the presence of 1 equivalent of melamine.