Supporting Information

Electrically Switchable Photoluminescence of Fluorescent-Molecule-Dispersed Liquid Crystal Prepared *via* **Photoisomerization-Induced Phase Separation**

Hongbo Lu^{*a}, Longzhen Qiu^{*a}, Guiyu Zhang^a, Aixiang Ding^b, Weibing Xu^a, Guobing Zhang^a, Xianghua Wang^a, Lin Kong^b, Yupeng Tian^b, and Jiaxiang Yang^{*b}

^{*a*} Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, People's Republic of China

^b College of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, People's Republic of China

*Corresponding author: <u>bozhilu@hfut.edu.cn; lzhqiu@hfut.edu.cn; jxyang@ahu.edu.cn</u>

Table of Contents

1. General Experimental Section	S-3
2. Experimental Procedures	S-4
3. Sample Preparation	S-6
4. Supplementary Figures	S-7
5. References for Supporting Information	S-34

1. General Experimental Section

1.1 Materials and Methods

All chemicals were purchased from Sigma Aldrich Chemical Co. and used without further purification. Synthetic route and characterization of (Z)-CN-APHP are described in this Supporting Information. ¹H NMR spectra were recorded on Agilent VNMRS600 (600 MHz) and Bruker Avance (400 MHz). Chemcial shifts are reported in δ , ppm and the coupling constants (*J*) are given in Hz. ¹³C NMR spectra were also measured on Bruker Avance (400 MHz). Mass spectra (MS) were obtained using an Agilent Q-TOF 6540 mass spectrometer. UV-vis absorption spectra were recorded on a TU-1901 of Beijing Purkinje General Co. PC spectrometer using samples in solutions. Fluorescence spectra were recorded on a Shimadzu RF 5301 PC fluorescence spectrometer using samples in both the solution and the solid state. Differential scanning calorimetry (DSC) was performed on a METTLER82le/400 instrument at a heating and cooling rate of 10 °C min⁻¹. The absolute photoluminescence quantum yield of solid-film was measured on HORIBA FluoroMax-4 spectrofluorometer using an integrating sphere (HORIBA Scientific, F-3092 integrating sphere). Fluorescence images were obtained by using a digital camera (Canon PowerShot G6). Polarized microscopy images were collected on a microscope (Leica DM2500M). For the measurements of electrical switching of both photoluminescence and optical transmittance, a high-voltage waveform generator (High Speed Bipolar Amplifier BA4825) was used to apply ac (1000 Hz, square-wave) electric fields through the cell.

1.2 DFT Computational Methods

The hybrid B3LYP functional¹ has been used in all calculations as incorporated in *Gaussian 09* package,² mixing the exact Hartree-Fock-type exchange with Becke's exchange functional³ and that proposed by Lee-Yang-Parr for the correlation contribution.⁴ We used 6-31G(d) basis set for all the atoms which provides reasonably high quality results in moderate timescales. All ground state geometry optimizations were followed by subsequent frequency test to ascertain stationary points. TD-DFT energy calculations on ground state optimized structures were performed to simulate UV-vis absorption spectra of the compounds. 1st excited state optimizations were also performed using TD-DFT method. Visualizations of the optimized structures and the MOs were performed using *Gaussview5.0*.

2. Experimental Procedures

Scheme S1. Synthetic route of (Z)-CN-APHP

Synthesis of (Z)-3-(4-hydroxyphenyl)-2-(4-nitrophenyl)acrylonitrile:

This compound was synthesized according to the method described in the literature.⁵

Synthesis of (Z)-2-(4-aminophenyl)-3-(4-hydroxyphenyl)acrylonitrile (T1):

A mixture of (Z)-3-(4-hydroxyphenyl)-2-(4-nitrophenyl)acrylonitrile (1.14 g, 4.8 mmol) dissolved in 1,4-dioxane (40 mL), water (7.5 mL) and Na₂S·9H₂O (5.16 g, 20.8 mmol) was stirred at 90 °C for 4 h. Then a saturated solution of NaHCO₃ (120 mL) was added and the aqueous phase was extracted with EtOAc (2×60 mL). The combined organic layers were washed with brine and dried over MgSO₄. After removal of solvent in vacuo, the crude product was recrystallized from ethanol and water to give a yellow solid with a yield of 78.9%.

FT-IR (KBr, cm⁻¹): 3434 (vs), 3341 (vs), 3285 (vs), 2215 (m), 1793 (w), 1624 (m), 1605 (vs), 1521 (vs), 1447 (m), 1400 (m), 1281 (m), 1258 (s), 1179 (s), 890 (w), 825 (m).

¹H NMR (CDCl₃, 400 MHz, ppm): δ 10.02 (s, 1 H, OH), 7.75 (d, 2 H, ArH, *J* = 8.8 Hz), 7.54 (s, 1 H, CH), 7.36 (d, 2 H, ArH, *J* = 8.4 Hz), 6.66 (d, 2 H, ArH, *J* = 8.8 Hz), 6.62 (d, 2 H, ArH, *J* = 8.8 Hz), 5.42 (s, 2 H, NH₂).

¹³C NMR (CDCl₃, 400 MHz, ppm): δ 158.9, 149.5, 137.1, 130.5, 137.1, 129.7, 128.3, 125.4, 121.3, 118.9, 115.7, 115.6, 105.8.

Synthesis of (Z)-2-(4-aminophenyl)-3-(4-(dodecyloxy)phenyl)acrylonitrile (Z)-CN-APHP:

A mixture of compound **T1** (800 mg, 3.84 mmol) dissolved in DMF (8 mL) and NaOH (227 mg, 7.68 mmol) was stirred for 15 min at RT. Then bromododecane (1.69 g, 6.78 mmol) was added, and the mixture was sequentially stirred for 12 h at 90 °C. The mixture was poured into 500 mL water and extracted with ethyl acetate (3 ×100 mL) three times. Finally, after silica gel column chromatography (n-hexane : EtOAc = 6:1), the product was recrystallized from ethanol and water to give a yellow

powder (982 mg, 2.43 mmol), yield 63.3%.

FT-IR (KBr, cm⁻¹): 3444 (vs), 3359 (vs), 3133 (s), 2919 (vs), 2851 (s), 2215(m), 1627 (s), 1604 (vs), 1516 (s), 1472 (m), 1420 (w), 1391 (w), 1355 (w), 1284 (s), 1250 (vs), 1178 (s), 1135 (m), 1064 (m), 1032 (m), 1000 (w), 956 (w), 897 (w), 865 (w), 833 (s), 781 (w), 765 (w), 721 (w), 630 (w).

¹H NMR (CDCl₃, 400 MHz): δ 7.80 (d, 2 H, ArH, J = 8.4 Hz), 7.47 (d, 2 H, ArH, J = 8.8 Hz), 7.28 (s, 1 H, CH), 6.93 (d, 2 H, ArH, J = 8.8 Hz), 6.65 (d, 2 H, ArH, J = 8.4 Hz), 4.00 (t, 2 H, CH₂, J = 6.4 Hz), 3.15 (t, 2 H, CH₂, J = 7.2 Hz), 1.77 (m, 2H, CH₂), 1.64 (m, 2 H, CH₂), 1.27 (m, 36 H, 18 × CH₂), 0.88 (t, 3 H, CH₃, J = 6.0 Hz)

¹³C NMR (CDCl₃, 400 MHz): δ 155.1, 143.7, 132.3, 125.3, 121.7, 121.6, 118.2, 113.7, 109.5, 107.4, 103.6, 62.9, 36.5, 26.7, 24.4~23.9, 21.9, 20.7, 17.4, 8.9.

HRMS (ESI) m/z [M + Na]⁺: calcd for C₂₇H₃₆N₂O, 427.2725, found 427.2721.

3. Sample Preparation

Irradiation Procedure of FMDLC: The nematic LC (E7) was purchased from Jiangsu Hecheng Display Technology Co., Ltd. To prepare the LC composite, weighed E7 and (Z)-CN-APHP were first dissolved in THF, a common solvent for all compounds; then, the mixture was dried in a vacuum oven to remove the solvent. To enter the mixture in a chosen ITO-coated, rubbed cell (Shenzhen Success Electronics Co., Ltd), it was heated to 100 °C and flow-filled into the cell through a capillary effect. Afterwards, the cell was taken out of the hot stage for slow cooling to room temperature to allow the aggregation of the (Z)-CN-APHP inside the predetermined LC orientational template. The cells were placed at a distance of 5 cm from the 365 nm hand-held UV lamp (0.87 mW/cm⁻²) under atmospheric conditions at room temperature, and irradiated simultaneously for 3h.

Irradiation Procedure of powdered crystal: The finely powdered crystal samples of (Z)-CN-APHP were made into thin film in the sandwich quartz cell. The cells were placed at a distance of 5 cm from the 365 nm hand-held UV lamp (0.87 mW/cm⁻²) under atmospheric conditions at 90 °C, and irradiated simultaneously for 2h.

4. Supplementary Figures

4.1 Gel images of CN-APHP and liquid crystal

Fig. S1 Gel of the mixture of CN-APHP and liquid crystal: (a) under room light, (b) under UV light.

4.2 Polarized optical microscopy (POM) image of (Z)-CN-APHP

Fig. S2 Focal conic fan-shaped texture of (Z)-CN-APHP observed by POM in the smetic phase at 75 °C on the cooling process

4.3 Geometry difference between (Z)- and (E)-CN-APHP

Fig. S3 Geometry optimization of (Z)- (a) and (E)-CN-APHP (b) by quantum chemical calculations based on density functional theory.

4.4 Energy levels of HOMO and LUMO and electron cloud distributions of (Z)- and (E)-CN-APHP molecules

As calculated by the B3LYP/6-31G(d) program, Eg of Z-isomer is 3.42 eV (Eg = LUMO-HOMO), which is lower than that of E-isomer (3.53 eV), so it means that it is easier for Z-isomer to convert into E-isomer in theory, which is in good agreement with the absorption spectra (**Fig. S2**).

Fig. S4 Energy levels of HOMO and LUMO and electron cloud distributions of (*Z*)- and (*E*)-CN-APHP molecules calculated by the B3LYP/6-31G(d) program.

4.5 HRMS

HRMS was also studied in this paper in order to eliminate the possibility of [2+2] cycloaddition of CN-APHP in the irradiation process. As shown in **Fig. S5**, there were the same m/z peaks (found 427.2721 in MS) in different samples, which indicated that [2+2] cycloaddition of CN-APHP never occurred and only isomerization happened in the irradiation process.

Fig. S5 HRMS of different samples with different treatments. (a) Z-isomer in DMF solution which was irradiated for 4h at 365 nm, (b) Z-isomer film in the quartz cell irradiated for 4h at 365 nm in the liquid crystalline phase, (c) pure Z-isomer powder without any treatment.

4.6 Photoisomerization of (Z)-CN-APHP in solution

Fig. S6 (a) The influence of the irradiation time on absorption peaks of CN-APHP in DMF (2.5×10^{-5} mol L⁻¹), (b) The influence of the irradiation time on PL intensity of CN-APHP in DMF (2.5×10^{-5} mol L⁻¹).

4.7 Photoisomerization of CN-APHP in LC

The photoisomerization of (Z)-CN-APHP in liquid crystal (83.3% E7 and 16.7% (Z)-CN-APHP) was investigated by UV-vis absorption spectra in **Fig. S7a**. It is clear that the decrease of absorption was depicted as a function of exposure time. Plotted in **Fig. S7b** is the development of fluorescence intensity emitted from FMDLC as a function of applied voltage. The system displays the stronger photoluminescence in the field-off state; with an electric field applied, the photoluminescence starts to decrease at the threshold voltage of 2.3 V. It should be mentioned that after LC molecules are aligned by the electric field, further increase in voltage showed little direct effect on the photoluminescence of FMDLC. As shown in **Fig. S7b**, after the voltage reaches to 20–30 V, the fluorescence intensity becomes almost a constant. **Fig. S7c** shows the evolution of POM of CN-APHP in LC by increasing the illumination time of 365 nm light (0.87 mW/cm⁻²).

Irradiation Time

Fig. S7 (a) Development of UV-vis absorption spectra of the cell filled with the mixture of CN-APHP and liquid crystal with increasing the illumination time of 365 nm light (0.87 mW/cm^{-2}). (b) Plots of photoluminescence versus applied voltage (ac 1K Hz square-wave). (c) POM evolution of the cell filled with the mixture of CN-APHP and liquid crystal with increasing the illumination time of 365 nm light (0.87 mW/cm^{-2}).

4.8 The modulation mechanism of electrical switching of photoluminescence of FMDLC

Fig. S8 (a) Schematic illustration of the mechanism for electrically switchable photoluminescence of FMDLC: different photoluminescence intensities at the field-off and field-on state are attributed to different numbers of fluorescent molecules excited by the incident light modulated by electric-field-induced orientation of LC molecules. (b) POM of FMDLC without applying an electric field (0 V). (c) POM of FMDLC with applying an electric field (30 V).

4.9 TD-DFT simulated UV-vis absorption spectra of Z, E-isomers

Fig. S9 TD-DFT simulated UV-vis absorption spectra of Z, E-isomers (no of states considered = 50)

Computational Data:

Z-isomers (Ground state optimized geometry)

Energy = -1234.99749094 au

Table S1: Coordinates of optimized structure of Z-isomers (GS)

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	X	Y	Z		
1	6	0	3 848638	2 540629	-0 564097		
2	6	0 0	2 596207	2 975420	-0 436793		
3	6	0 0	1 585756	2 113748	0 176807		
4	6	0	1.927046	0.921340	0.646708		
5	6	0	3.278163	0.476371	0.536759		
6	6	0	4.213248	1.218293	-0.053605		
7	8	0	0.263470	2.518497	0.195440		
8	6	0	-14.050796	-1.513088	-0.320079		
9	6	0	-12.601432	-1.955629	-0.591921		
10	6	0	-11.634415	-0.837204	-0.163363		
11	6	0	-10.185516	-1.285605	-0.422855		
12	6	0	-9.219375	-0.159583	-0.015649		
13	6	0	-7.770312	-0.622018	-0.246079		
14	6	0	-6.805788	0.518607	0.115179		
15	6	0	-5.355196	0.029593	-0.030765		
16	6	0	-4.403795	1.194950	0.269068		
17	6	0	-2.954635	0.693136	0.302382		
18	6	0	-2.030710	1.906795	0.451247		
19	6	0	-0.586742	1.444342	0.610486		
20	6	0	5.612251	0.721092	-0.246237		
21	6	0	6.128580	-0.413320	0.264794		
22	6	0	7.471596	-0.775930	-0.043955		
23	6	0	5.409305	-1.295593	1.123038		
24	7	0	4.830502	-2.007792	1.815176		
25	6	0	7.964856	-1.884614	0.497268		
26	6	0	9.319773	-2.289580	0.209187		
27	6	0	10.067898	-1.551110	-0.602697		
28	6	0	9.528775	-0.329960	-1.207656		
29	6	0	8.281542	0.042982	-0.937999		
30	7	0	11.359788	-1.942206	-0.872283		
31	1	0	4.537063	3.115321	-1.006639		
32	1	0	2.347263	3.888510	-0.759805		
33	1	0	1.239619	0.336021	1.076659		
34	1	0	3.529397	-0.415507	0.912638		
35	1	0	-14.679324	-2.239376	-0.598328		
36	1	0	-14.249681	-0.683004	-0.841224		
37	1	0	-14.166172	-1.329013	0.656018		
38	1	0	-12.403151	-2.785478	-0.070430		
39	1	0	-12.486705	-2.139314	-1.568146		

Electropic Supplementary Material (ESI) for Journal of Materials Chemistry C
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C
This journal is © The Royal Society of Chemistry 2014

40	1	0	-11.826792	-0.009824	-0.690994
41	1	0	-11.755113	-0.647244	0.810996
42	1	0	-9.988620	-2.104660	0.116027
43	1	0	-10.068808	-1.489434	-1.394819
44	1	0	-9.402210	0.653133	-0.568833
45	1	0	-9.350144	0.058568	0.951464
46	1	0	-7.578133	-1.416260	0.330405
47	1	0	-7.648418	-0.869793	-1.207240
48	1	0	-6.959921	1.292468	-0.499235
49	1	0	-6.967379	0.805026	1.059632
50	1	0	-5.186153	-0.715715	0.614237
51	1	0	-5.203299	-0.295757	-0.964022
52	1	0	-4.497167	1.890252	-0.443547
53	1	0	-4.636915	1.592889	1.156342
54	1	0	-2.828518	0.074629	1.078032
55	1	0	-2.744186	0.209960	-0.547417
56	1	0	-2.106242	2.482638	-0.362775
57	1	0	-2.301162	2.432115	1.258084
58	1	0	-0.422135	0.640024	0.039562
59	1	0	-0.405662	1.217182	1.567326
60	1	0	6.220112	1.283651	-0.806692
61	1	0	7.396493	-2.439173	1.105061
62	1	0	9.693467	-3.121801	0.618729
63	1	0	10.096215	0.219999	-1.820363
64	1	0	7.903449	0.875248	-1.343432
65	1	0	11.723059	-2.770145	-0.457522
66	1	0	11.926531	-1.398517	-1.478558

Z-isomers (1st excited-state optimised geometry)

Energy = -1235.29969056 au

Table S2: Coordinates of optimized structure of Z-isomers (ES)

Center	Atomic	Atomic	mic Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	6	0	3.802935	-1.985548	-0.262332		
2	6	0	2.444097	-2.243346	-0.298356		
3	6	0	1.526332	-1.191795	-0.144286		
4	6	0	2.005222	0.112555	0.048290		
5	6	0	3.374789	0.358822	0.081010		
6	6	0	4.314495	-0.679164	-0.077371		
7	8	0	0.213267	-1.537643	-0.192906		
8	6	0	-14.848994	0.533085	0.066427		
9	6	0	-13.469342	1.191535	0.168385		
10	6	0	-12.310842	0.195965	0.025746		
11	6	0	-10.925461	0.846977	0.126520		
12	6	0	-9.767152	-0.148897	-0.016124		

12	6	0	0 202002	0 502026	0.004440
13	0	0	-8.382003	0.303030	0.084449
14 15	0	0	-/.22302/	-0.492/33	-0.058525
13	0	0	-3.838901	0.1001/4	0.041903
10	0	0	-4.081081	-0.855914	-0.101204
l / 10	0	0	-3.29/184	-0.180/81	-0.001232
18	6	0	-2.145345	-1.183803	-0.145885
19	6	0	-0.779563	-0.519179	-0.045060
20	6	0	5.762948	-0.528530	-0.0604/5
21	6	0	6.576093	0.566619	-0.003/21
22	6	0	8.056541	0.469106	0.055/56
23	6	0	6.050052	1.900083	-0.019908
24	7	0	5.669081	3.001283	-0.040568
25	6	0	8.870990	1.504481	-0.436648
26	6	0	10.256510	1.414788	-0.409400
27	6	0	10.893503	0.280272	0.121858
28	6	0	10.087295	-0.751867	0.634145
29	6	0	8.702613	-0.652505	0.605640
30	7	0	12.282152	0.161220	0.101173
31	1	0	4.499648	-2.811972	-0.382674
32	1	0	2.063191	-3.249331	-0.443234
33	1	0	1.320359	0.942787	0.175555
34	1	0	3.706430	1.377856	0.235492
35	1	0	-15.653763	1.269636	0.172207
36	1	0	-14.985665	-0.224077	0.848483
37	1	0	-14.979503	0.034034	-0.901814
38	1	0	-13.376241	1.968014	-0.604321
39	1	0	-13.382427	1.711919	1.132913
40	1	0	-12.404607	-0.581483	0.798817
41	1	0	-12.398476	-0.325354	-0.939343
42	1	0	-10.832815	1.624368	-0.646572
43	1	0	-10.838940	1.368348	1.091552
44	1	0	-9.859464	-0.926174	0.757073
45	1	0	-9.853576	-0.670362	-0.981064
46	1	0	-8.289671	1.280284	-0.688750
47	1	0	-8.295447	1.024457	1.049394
48	1	0	-7.315344	-1.269829	0.715060
49	1	0	-7.309916	-1.014255	-1.023192
50	1	0	-5.747006	0.937166	-0.731529
51	1	0	-5.752235	0.681473	1.006847
52	1	0	-4 770898	-1 612514	0 672467
53	1	0	-4 766093	-1 357094	-1 066015
54	1	0	-3 207667	0 595602	-0 775264
55	1	Ő	-3 212170	0 339837	0 964009
56	1	Ő	-2.217702	-1 956606	0 630184
57	1	Ő	-2.213496	-1 700415	-1 111892
58	1	Ő	-0.658178	-0.020306	0.927260
59	1	0	-0.654271	0.020500	-0.831713
60	1	0	6 290692	-1 478070	-0 121084
61	1	0	8 409733	2 395824	-0.8521004
62	1	0	10 856571	2.373024	-0 808483
63	1	0	10 555334	-1 630933	1 071877
05	1	0	10.000007	1.00070707	1.0/1044

64	1	0	8.114875	-1.451310	1.048503
65	1	0	12.791084	1.035549	0.064551
66	1	0	12.673347	-0.472237	0.787062

TD-DFT obtained Excitation energies and oscillator strengths:

Excited State 110 ->111	1: 0	Singlet-A 0.70515	3.0888 eV	401.40 nm	f=0.8882	<s**2>=0.000</s**2>
Excited State 109 ->111 110 ->114	2: 0 -(Singlet-A 0.69126 0.10868	4.0338 eV	307.37 nm	f=0.2236	<s**2>=0.000</s**2>
Excited State 108 ->111 110 ->113	3: 0 -(Singlet-A 0.52195 0.46310	4.3482 ev	285.14 nm	f=0.0126	<s**2>=0.000</s**2>
Excited State 107 ->111 109 ->112 110 ->112	4: 0 0 0	Singlet-A 0.45737 0.12224 0.51915	4.3601 eV	284.36 nm	f=0.0015	<s**2>=0.000</s**2>
Excited State 108 ->111 108 ->114 110 ->113	5: 0 0 0	Singlet-A 0.47224 0.11987 0.50669	4.6581 eV	266.17 nm	f=0.0625	<s**2>=0.000</s**2>
Excited State 107 ->111 109 ->112 110 ->112	6: 0 0 -(Singlet-A 0.50239 0.12268 0.47121	4.7961 eV	258.51 nm	f=0.0934	<s**2>=0.000</s**2>
Excited State 106 ->111 110 ->114 110 ->115 110 ->116	7: 0 -0 0	Singlet-A 0.10803 0.58057 0.32037 0.14807	5.0532 eV	245.36 nm	f=0.1374	<s**2>=0.000</s**2>
Excited State 106 ->111 110 ->116	8: 0 -0	Singlet-A).54398).43025	5.3075 eV	233.60 nm	f=0.0630	<s**2>=0.000</s**2>
Excited State 106 ->111 108 ->113 109 ->112 110 ->114 110 ->115 110 ->116	9: -(-(0 0 0 -(Singlet-A 0.24308 0.11205 0.12285 0.33446 0.46367 0.24182	5.3874 eV	230.14 nm	f=0.0555	<s**2>=0.000</s**2>
Excited State	10:	Singlet-A	5.5257 eV	224.38 nm	n f=0.0214	<s**2>=0.000</s**2>

108 ->114 109 ->112 109 ->113	-0.10114 0.20476 0.64903				
Excited State 107 ->111 107 ->115 109 ->112 109 ->113 110 ->116	11: Singlet-A -0.16742 0.11648 0.60277 -0.19780 0.16090	5.5470 eV	223.51 nm	f=0.0805	<s**2>=0.000</s**2>
Excited State 106 ->111 107 ->112 109 ->112 110 ->115 110 ->116	12: Singlet-A 0.31556 -0.14644 -0.11979 0.38900 0.42303	5.6833 eV	218.16 nm	f=0.0518	<s**2>=0.000</s**2>
Excited State 105 ->111	13: Singlet-A 0.69085	5.7655 eV	215.05 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 93 ->111 96 ->111 97 ->111 98 ->111 99 ->111 100 ->111 101 ->111 105 ->111	14: Singlet-A 0.16992 -0.23284 0.29375 0.16181 -0.31107 0.36636 0.14781 -0.13453	5.8832 eV	210.74 nm	f=0.0015	<s**2>=0.000</s**2>
Excited State 108 ->113 109 ->114 109 ->115 109 ->116	15: Singlet-A 0.14945 0.64106 -0.17954 0.10443	6.0205 eV	205.94 nm	f=0.0157	<s**2>=0.000</s**2>
Excited State 96 ->111 98 ->111 99 ->111 100 ->111 101 ->111 109 ->115	16: Singlet-A 0.11365 -0.12207 0.46567 0.39789 0.20282 -0.12473	6.2500 eV	198.38 nm	f=0.0176	<s**2>=0.000</s**2>
Excited State 108 ->112	17: Singlet-A 0.70468	6.3061 eV	196.61 nm	f=0.0040	<s**2>=0.000</s**2>
Excited State 99 ->111 107 ->112	18: Singlet-A 0.10395 -0.13121	6.3849 eV	194.18 nm	f=0.0301	<s**2>=0.000</s**2>

108 ->113	0.19642				
109 ->114	0.16699				
109 ->115	0.51531				
109 ->116	-0.32092				
Excited State	19: Singlet-A	6.4236 eV	193.01 nm	f=0.0003	<s**2>=0.000</s**2>
90 ->111	0.17377				
92 ->111	0.10379				
93 ->111	0.52480				
95 ->111	-0.13628				
97 ->111	0.16562				
98 ->111	-0.10400				
99 - >111	0.15617				
100 ->111	-0.23300				
Excited State	20: Singlet-A	6.5027 eV	190.67 nm	f=0.0218	<s**2>=0.000</s**2>
94 - >111	-0.11454				
96 - >111	-0.10492				
103 ->111	0.46800				
107 ->112	0.21516				
109 ->115	-0.18459				
109 ->116	-0.36398				
Excited State	21: Singlet-A	6.5076 eV	190.52 nm	f=0.0338	<s**2>=0.000</s**2>
100 ->111	-0.10373				
101 ->111	0.18073				
103 ->111	0.46267				
107 ->112	-0.26009				
109 ->115	0.16658				
109 ->116	0.35355				
Excited State	22: Singlet-A	6.5300 eV	189.87 nm	f=0.0011	<s**2>=0.000</s**2>
96 ->111	0.11519				
100 ->111	-0.11845				
101 ->111	0.22921				
104 ->111	0.57504				
107 ->113	-0.25646				
Excited State	23: Singlet-A	6.5320 eV	189.81 nm	f=0.0033	<s**2>=0.000</s**2>
104 ->111	0.24357				
107 ->113	0.64946				
Excited State	24: Singlet-A	6.5525 eV	189.22 nm	f=0.0002	<s**2>=0.000</s**2>
98 ->111	-0.18923				
102 ->111	0.66973				
Excited State	25: Singlet-A	6.5747 eV	188.58 nm	f=0.0217	<s**2>=0.000</s**2>
94 ->111	0.21667				
96 ->111	0.34835				
97 ->111	0.24576				
100 ->111	-0.16390				
101 ->111	0.27687				

104 ->111 107 ->112	-0.29272 0.19940				
Excited State 92 ->111 94 ->111 96 ->111 100 ->111 101 ->111 103 ->111 104 ->111 107 ->112	26: Singlet-A -0.11505 -0.29043 -0.20019 -0.16292 0.45424 -0.22473 -0.14256 -0.15551	6.6321 eV	186.95 nm	f=0.0195	<s**2>=0.000</s**2>
Excited State 92 ->111 97 ->111 98 ->111 100 ->113 106 ->113 108 ->114 110 ->113	27: Singlet-A -0.19992 0.10867 0.11518 -0.11156 -0.22136 0.53952 -0.10521	6.6618 eV	186.11 nm	f=0.0786	<s**2>=0.000</s**2>
Excited State 95 ->111 97 ->111 98 ->111 99 ->111 102 ->111 108 ->114	28: Singlet-A 0.12360 0.10730 0.53915 0.25298 0.18490 -0.19226	6.6730 eV	185.80 nm	f=0.0124	<s**2>=0.000</s**2>
Excited State 89 ->111 90 ->111 91 ->111 92 ->111 96 ->111 97 ->111 98 ->111 106 ->112 108 ->114	29: Singlet-A -0.15373 0.14972 0.12774 0.39381 0.13294 -0.28233 0.27383 0.16660 0.16329	6.6975 eV	185.12 nm	f=0.0189	<s**2>=0.000</s**2>
Excited State 97 ->111 106 ->112 108 ->113	30: Singlet-A 0.18837 0.61165 -0.13604	6.7148 eV	184.64 nm	f=0.0502	<s**2>=0.000</s**2>
Excited State 91 ->111 92 ->111 93 ->111 96 ->111	31: Singlet-A 0.13463 0.34642 -0.22557 -0.23071	6.7299 eV	184.23 nm	f=0.1969	<s**2>=0.000</s**2>

97 ->111 99 ->111 106 ->112 108 ->113	0.19723 0.15078 -0.22235 -0.27694				
Excited State 92 ->111 93 ->111 96 ->111 97 ->111 108 ->113 108 ->114 109 ->114 109 ->115 110 ->118	32: Singlet-A 0.22997 -0.14257 -0.13660 0.13497 0.49652 0.11001 -0.14734 -0.14128 0.11502	6.7348 eV	184.09 nm	f=0.5115	<s**2>=0.000</s**2>
Excited State 91 ->111 94 ->111 95 ->111 96 ->111 97 ->111 101 ->111 107 ->112	33: Singlet-A -0.17571 0.43867 -0.10024 -0.34043 -0.26972 0.14899 0.14069	6.8543 eV	180.88 nm	f=0.0295	<s**2>=0.000</s**2>
Excited State 94 ->111 106 ->113 107 ->114 108 ->114 109 ->115 109 ->118 110 ->118	34: Singlet-A 0.12539 0.46547 -0.13947 0.14870 -0.10349 0.10319 -0.39720	6.8864 eV	180.04 nm	f=0.0396	<s**2>=0.000</s**2>
Excited State 106 ->113 107 ->114 108 ->113 109 ->118 110 ->118	35: Singlet-A 0.30905 -0.28106 -0.12153 -0.11856 0.48402	6.9076 eV	179.49 nm	f=0.1219	<s**2>=0.000</s**2>
Excited State 106 ->113 107 ->114 107 ->115	36: Singlet-A 0.28109 0.59099 -0.10995	6.9143 eV	179.31 nm	f=0.0390	<s**2>=0.000</s**2>
Excited State 90 ->111 93 ->111 94 ->111 95 ->111 98 ->111	37: Singlet-A 0.11738 0.10334 0.17097 0.64055 -0.12582	6.9552 eV	178.26 nm	f=0.0001	<s**2>=0.000</s**2>

Excited State	38:	Singlet-A	6.9825 eV	177.56 nm	f=0.2878	<s**2>=0.000</s**2>
88 ->111	-0.1	10022				
89 ->111	0.1	1682				
91 ->111	0.1	0735				
94 ->111	-0.1	2689				
107->112	0	38990				
108 ->113	0.	12272				
108 ->115	-0.	16544				
108 ->116	0.	16171				
109 ->115	0.2	20032				
109 ->116	0.2	24817				
110 ->118	-0.	19194				
Excited State	39:	Singlet-A	7.0265 eV	176.45 nm	f=0.0162	<s**2>=0.000</s**2>
85 ->111	-0.1	0479				
87 ->111	0.3	4335				
89 ->111	0.5	0078				
92 ->111	0.1	0736				
95 ->111	-0.1	2585				
97 ->111	-0.1	1425				
Evoited State	40.	Cinclet A	7.0659 aV	175 17	£_0.0256	~~~**2> -0 000
Exclued State $106 > 112$	40.	Singlet-A	7.0038 eV	1/3.4/ 1111	1-0.0550	<52>=0.000
100 - > 113	0.	11133				
10/ -> 112	0.	13537				
108 ->113	0.	10324				
108 ->115	0.:	52979				
108 ->116	-0	32505				
Excited State	41:	Singlet-A	7.1634 eV	173.08 nm	f=0.0038	<s**2>=0.000</s**2>
109 ->120	0.	10438				
110 ->117	-0.2	23569				
110 ->119	0.2	32715				
110 ->120	0.5	50705				
110 ->121	0.	12440				
110 ->122	0.	10619				
Excited State	42 [.]	Singlet-A	7 2021 eV	172 15 nm	f=0.0042	<s**2>=0 000</s**2>
87 ->111	-0.1	4984	,.2021 0 ,	1,2.10	1 0.0012	5 2 0.000
90 ->111	-0.1	2133				
91 ->111	0.1	1445				
93 ->111	0.1	0130				
106 ->114	0.1	53041				
106 ->115	-0	18507				
106 ->116	0.1	12886				
D 10	40	0.1	7 00 00 XX	1 5 1 5 2	0.0.0100	
Excited State	43:	Singlet-A	1.2203 eV	1/1./2 nm	1=0.0109	<5**2>=0.000
δ/ ->[]]	0.1	1/93				
88 ->111	-0.2	22193				
90 ->111	0.1	9238				
91 - >111	0.4	-/422				

92 ->111 93 ->111 94 ->111	-0.24286 -0.12180 0.19999				
Excited State 84 ->111 87 ->111 90 ->111 91 ->111 93 ->111 106 ->114 106 ->115	44: Singlet-A -0.13298 0.37037 0.30200 -0.29003 -0.17862 0.23108 -0.10149	7.2377 eV	171.30 nm	f=0.0015	<s**2>=0.000</s**2>
Excited State 107 ->115 108 ->115 108 ->116	45: Singlet-A -0.39979 0.30218 0.44738	7.2689 eV	170.57 nm	f=0.0572	<s**2>=0.000</s**2>
Excited State 106 ->114 107 ->115 108 ->115 108 ->116	46: Singlet-A -0.16314 0.47861 0.22581 0.36405	7.2797 eV	170.32 nm	f=0.0545	<s**2>=0.000</s**2>
Excited State 99 ->112 100 ->112 105 ->112	47: Singlet-A -0.14311 0.10824 0.67662	7.3206 eV	169.36 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 110 ->117 110 ->119 110 ->120 110 ->121 110 ->122 110 ->123	48: Singlet-A 0.43373 -0.12767 0.14510 0.19847 0.43216 -0.15091	7.3512 eV	168.66 nm	f=0.0011	<s**2>=0.000</s**2>
Excited State 94 ->112 107 ->116	49: Singlet-A -0.11568 0.64869	7.3663 eV	168.31 nm	f=0.0521	<s**2>=0.000</s**2>
Excited State 90 ->111 110 ->117 110 ->120 110 ->122 110 ->123	50: Singlet-A -0.11939 0.40799 0.24237 -0.37059 0.28620	7.4214 eV	167.06 nm	f=0.0010	<s**2>=0.000</s**2>

E-isomers (Ground state optimized geometry)

Energy = -1234.98681356 au

Center	Atomic	Atomic	Coordir	nates (Angstr	oms)
Number	Number	Туре	Х	Ŷ	Ż
1	6	0	-4 616799	-3 186256	-0 610697
2	6	Ő	-3.392577	-3.631750	-0.299551
3	6	0	-2.420455	-2.725056	0.336839
4	6	0	-2.800618	-1.502519	0.668834
5	6	0	-4.123873	-1.059488	0.375475
6	6	0	-5.001473	-1.799660	-0.288410
7	8	0	-1.083609	-3.106063	0.520647
8	6	0	13.125528	1.164235	-0.492107
9	6	0	11.686789	1.649818	-0.751197
10	6	0	10.690288	0.560395	-0.313189
11	6	0	9.249739	1.068652	-0.513672
12	6	0	8.260804	-0.029204	-0.084563
13	6	0	6.812500	0.494154	-0.173081
14	6	0	5.858655	-0.645972	0.225565
15	6	0	4.396559	-0.156218	0.282406
16	6	0	3.506602	-1.378895	0.584229
17	6	0	2.026777	-0.983184	0.746794
18	6	0	1.192254	-2.284394	0.805572
19	6	0	-0.301828	-1.957977	0.942836
20	6	0	-6.393007	-1.274076	-0.696921
21	6	0	-6.933521	-0.016044	-0.712775
22	6	0	-8.319193	0.063449	-1.033509
23	7	0	-9.438474	0.128217	-1.292644
24	6	0	-6.249582	1.304670	-0.388110
25	6	0	-4.951707	1.512070	-0.589571
26	6	0	-4.293959	2.711979	-0.161729
27	6	0	-4.990906	3.657807	0.441766
28	6	0	-6.442594	3.509801	0.601821
29	6	0	-7.046478	2.392280	0.190523
30	7	0	-4.323895	4.760150	0.936554
31	1	0	-5.270222	-3.794253	-1.061778
32	1	0	-3.138500	-4.578273	-0.498756
33	1	0	-2.158690	-0.887520	1.126770
34	1	0	-4.402488	-0.150028	0.684078
35	1	0	13.772770	1.871391	-0.776414
36	1	0	13.294918	0.328513	-1.014553
37	1	0	13.244162	0.977094	0.483089
38	1	0	11.517911	2.485422	-0.228446
39	1	0	11.568664	1.836619	-1.726464
40	1	0	10.832812	-0.262060	-0.863942
41	1	0	10.835863	0.344850	0.652378
42	1	0	9.103437	1.886485	0.042976
43	1	0	9.104813	1.290812	-1.477802
44	1	0	8.363555	-0.820175	-0.687729

Table S3: Coordinates of optimized structure of E-isomers (GS)

45	1	0	8.457028	-0.300331	0.857748
46	1	0	6.694195	1.266912	0.450440
47	1	0	6.616048	0.787060	-1.108764
48	1	0	5.930197	-1.381450	-0.448127
49	1	0	6.122044	-0.991501	1.126258
50	1	0	4.293875	0.526929	1.005422
51	1	0	4.137334	0.245655	-0.595771
52	1	0	3.586224	-2.031008	-0.169676
53	1	0	3.821896	-1.807426	1.430907
54	1	0	1.904995	-0.462785	1.591948
55	1	0	1.735931	-0.427685	-0.032178
56	1	0	1.339089	-2.807741	-0.033759
57	1	0	1.484329	-2.827401	1.592867
58	1	0	-0.526134	-1.171279	0.367727
59	1	0	-0.510787	-1.744161	1.897151
60	1	0	-7.019657	-1.987895	-1.009655
61	1	0	-4.416273	0.807356	-1.055161
62	1	0	-3.313789	2.832084	-0.319239
63	1	0	-6.978216	4.244525	1.017982
64	1	0	-8.038200	2.296896	0.276582
65	1	0	-4.819268	5.462294	1.428379
66	1	0	-3.331958	4.820290	0.841493

E-isomers (1st excited-state optimized geometry)

Energy = -1235.29531435 au

Table S4: Coordinates of optimized structure of E-isomers (ES)

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	4.364162	-2.937903	0.460492	
2	6	0	2.990875	-3.050885	0.602224	
3	6	0	2.155370	-1.988752	0.222487	
4	6	0	2.726814	-0.820441	-0.303979	
5	6	0	4.109795	-0.716001	-0.427364	
6	6	0	4.966002	-1.762061	-0.039352	
7	8	0	0.821873	-2.191885	0.393000	
8	6	0	-14.030128	1.033267	-0.071920	
9	6	0	-12.609021	1.525406	-0.364565	
10	6	0	-11.526091	0.502639	0.002623	
11	6	0	-10.099793	0.987180	-0.287468	
12	6	0	-9.017195	-0.035946	0.079928	
13	6	0	-7.591001	0.448985	-0.210910	
14	6	0	-6.508563	-0.574307	0.156480	
15	6	0	-5.082616	-0.089162	-0.135280	
16	6	0	-4.001061	-1.113026	0.232359	
17	6	0	-2.575622	-0.626730	-0.060982	
18	6	0	-1.500888	-1.656862	0.309720	

19	6	0	-0.092431	-1.161624	0.012212
20	6	0	6.419849	-1.745919	-0.198805
21	6	0	7.302575	-0.711583	-0.300885
22	6	0	8.661292	-1.069252	-0.608808
23	7	0	9.763790	-1.336716	-0.874267
24	6	0	7.061980	0.742013	-0.100161
25	6	0	6.294915	1.216860	0.977286
26	6	0	6.108134	2.576728	1.186572
27	6	0	6.693226	3.523927	0.325630
28	6	0	7.476515	3.055895	-0.743644
29	6	0	7.661317	1.693109	-0.942583
30	7	0	6.555521	4.888301	0.567787
31	1	0	4.996649	-3.774653	0.747358
32	1	0	2.536255	-3.954455	0.995854
33	1	0	2.104304	0.006207	-0.626257
34	1	0	4.527882	0.190405	-0.849657
35	1	0	-14.779162	1.785509	-0.344670
36	1	0	-14.159350	0.805724	0.993479
37	1	0	-14.256597	0.118792	-0.634046
38	1	0	-12.521389	1.777963	-1.430964
39	1	0	-12.424940	2.460014	0.184347
40	1	0	-11.614327	0.249571	1.069860
41	1	0	-11.711069	-0.433006	-0.546152
42	1	0	-10.012633	1.240239	-1.354695
43	1	0	-9.915869	1.922961	0.261271
44	1	0	-9.103956	-0.288814	1.147168
45	1	0	-9.201131	-0.971771	-0.468568
46	1	0	-7.504145	0.701704	-1.278197
47	1	0	-7.406859	1.384816	0.337592
48	1	0	-6.594723	-0.826750	1.223814
49	1	0	-6.692600	-1.510209	-0.391728
50	1	0	-4.996167	0.162892	-1.202716
51	1	0	-4.898157	0.846698	0.413011
52	1	0	-4.085324	-1.364644	1.299713
53	1	0	-4.184100	-2.048869	-0.315633
54	1	0	-2.491569	-0.375910	-1.128722
55	1	0	-2.392578	0.309121	0.487484
56	1	0	-1.567306	-1.904787	1.376849
57	1	0	-1.667418	-2.591304	-0.241334
58	1	0	0.126138	-0.243009	0.576073
59	1	0	0.024742	-0.936816	-1.057885
60	1	0	6.861743	-2.739017	-0.263498
61	1	0	5.843506	0.508081	1.664569
62	1	0	5.520478	2.916449	2.036608
63	1	0	7.951740	3.768964	-1.413461
64	1	0	8.283448	1.358165	-1.768115
65	1	0	6.701493	5.491877	-0.231202
66	1	0	5.742355	5.158510	1.105971

TD-DFT obtained Excitation energies and oscillator strengths:

Excited State 110 ->111	1:	Singlet-A 0.70227	3.1698 eV	391.14 nm	f=0.4200	<s**2>=0.000</s**2>
Excited State 109 ->111 110 ->114	2:	Singlet-A 0.68733 -0.12780	4.0025 eV	309.77 nm	f=0.4017	<s**2>=0.000</s**2>
Excited State 107 ->111 108 ->111 110 ->112	3:	Singlet-A 0.12357 -0.40653 0.55033	4.3038 eV	288.08 nm	f=0.0158	<s**2>=0.000</s**2>
Excited State 107 ->111 108 ->111 109 ->112 110 ->112 110 ->113	4:	Singlet-A 0.45935 0.30219 0.11823 0.15057 -0.39256	4.5240 eV	274.06 nm	f=0.0104	<s**2>=0.000</s**2>
Excited State 107 ->111 108 ->111 108 ->114 109 ->112 110 ->112 110 ->113	5:	Singlet-A -0.17420 0.48231 0.10129 -0.10383 0.36717 0.26336	4.6404 eV	267.18 nm	f=0.1550	<s**2>=0.000</s**2>
Excited State 107 ->111 109 ->112 110 ->112 110 ->113	6:	Singlet-A 0.41754 0.18837 -0.15450 0.49906	4.8959 eV	253.24 nm	f=0.0234	<s**2>=0.000</s**2>
Excited State 106 ->111 109 ->111 109 ->114 110 ->114 110 ->115	7:	Singlet-A 0.12933 0.10427 0.10162 0.63401 -0.16223	5.1077 eV	242.74 nm	f=0.2477	<s**2>=0.000</s**2>
Excited State 107 ->111 108 ->114 109 ->112 109 ->113	8:	Singlet-A -0.20774 -0.10409 0.62481 0.18015	5.2612 eV	235.66 nm	f=0.0871	<s**2>=0.000</s**2>
Excited State 106 ->111 110 ->114 110 ->115	9:	Singlet-A 0.58961 -0.16596 -0.30496	5.3567 eV	231.46 nm	f=0.1147	<s**2>=0.000</s**2>

Excited State 107 ->111 107 ->115 109 ->112 109 ->113	10: Singlet-A 0.14017 -0.10780 -0.13756 0.64728	5.5429 eV	223.68 nm	f=0.0489	<s**2>=0.000</s**2>
Excited State 106 ->111 107 ->112 110 ->114 110 ->115 110 ->116	11: Singlet-A 0.24872 -0.10236 0.11194 0.52554 0.33357	5.6433 eV	219.70 nm	f=0.0470	<s**2>=0.000</s**2>
Excited State 109 ->114 110 ->115 110 ->116	12: Singlet-A 0.59904 -0.12535 0.30914	5.7878 eV	214.22 nm	f=0.0515	<s**2>=0.000</s**2>
Excited State 106 ->111 108 ->112 109 ->114 110 ->115 110 ->116	13: Singlet-A -0.16958 -0.17749 -0.29121 -0.23248 0.48561	5.8355 eV	212.47 nm	f=0.0094	<s**2>=0.000</s**2>
Excited State 105 ->111	14: Singlet-A 0.70156	5.8693 eV	211.24 nm	f=0.0000	<s**2>=0.000</s**2>
Excited State 93 ->111 96 ->111 102 ->111 103 ->111 108 ->112	15: Singlet-A 0.27096 0.12504 -0.11006 0.49917 -0.29285	6.0909 eV	203.56 nm	f=0.0591	<s**2>=0.000</s**2>
Excited State 93 ->111 103 ->111 107 ->112 107 ->113 108 ->112 108 ->113	16: Singlet-A 0.14084 0.23223 0.10844 -0.11676 0.54959 -0.21780	6.1337 eV	202.13 nm	f=0.0811	<s**2>=0.000</s**2>
Excited State 93 ->111 94 ->111 95 ->111 96 ->111 97 ->111 98 ->111	17: Singlet-A 0.31809 0.18870 -0.13870 0.34080 0.17793 -0.22859	6.2174 eV	199.41 nm	f=0.0056	<s**2>=0.000</s**2>

103 ->111	-0.33738				
D 1000		(0007 J.	106.60	6 0 000 6	-C+++ C - 0.000
Excited State	18: Singlet-A	6.303 / eV	196.69 nm	1=0.0336	<s**2>=0.000</s**2>
10/ -> 112 107 >112	0.51545				
10/ ->113 108 >112	0.10027				
108 - > 113 100 > 115	-0.23894				
109 ->115	-0.37788				
Excited State	19: Singlet-A	6.4014 eV	193.68 nm	f=0.0492	<s**2>=0.000</s**2>
97 ->111	0.14282				
107 ->112	0.20061				
107 ->113	0.31943				
108 ->113	-0.20899				
109 ->115	0.46828				
109 ->116	0.12126				
D • 1 G · ·			100 15	0.0.0110	
Excited State	20: Singlet-A	6.4517 eV	192.17 nm	t=0.0112	<s**2>=0.000</s**2>
93 ->111	0.44498				
95 ->111	0.27020				
96 ->111	-0.11237				
98 ->111	0.38149				
103 ->111	-0.13048				
Excited State	21. Singlet-A	6 4978 eV	190.81 nm	f=0.0233	<\$**2>=0.000
106 ->112	0 60141	0.4770 CV	170.01 mm	1 0.0255	5 2 0.000
100 - 112 108 ->114	-0 30792				
109 ->116	-0 10064				
Excited State	22: Singlet-A	6.5861 eV	188.25 nm	f=0.0491	<s**2>=0.000</s**2>
95 ->111	0.11697				
97 ->111	0.24704				
102 ->111	-0.19875				
106 ->112	0.19608				
107 ->113	-0.17510				
108 ->114	0.40108				
109 ->116	-0.21224				
Excited State	23. Singlet_A	6 5890 eV	188 14 nm	f=0.0487	<\$**7>=0 000
95 ->111	-0 10875	0.5077 01	100.1111	1 0.0107	·5 2 [,] 0.000
97 ->111	-0 24079				
102 ->111	0.23042				
106 ->112	0.26657				
106 ->113	-0.10852				
108 ->114	0.33441				
109 ->116	0.31885				
	0 4 0 ¹ 1 1	((000 * *	107.57	0 0 01 10	
Excited State	24: Singlet-A	6.6099 eV	18/.5/ nm	1=0.0142	<5**2>=0.000
9/->[]]	0.11883				
100 ->111	0.25609				
102 - >111	0.330/1				
103 ->111	0.10/03				

109 ->116	-0.26111				
Excited State 97 ->111 100 ->111	25: Singlet-A 0.19160 0.26968	6.6298 eV	187.01 nm	f=0.0251	<s**2>=0.000</s**2>
104 ->111 108 ->113 109 ->116	0.53802 0.12581 0.23345				
Excited State 95 ->111 97 ->111 104 ->111 107 ->112 107 ->113 108 ->113 109 ->116	26: Singlet-A -0.10077 -0.31985 0.38531 -0.11689 0.15325 -0.18628 -0.28566	6.6434 eV	186.63 nm	f=0.0710	<s**2>=0.000</s**2>
Excited State 99 ->111 101 ->111	27: Singlet-A -0.20562 0.66555	6.6532 eV	186.35 nm	f=0.0009	<s**2>=0.000</s**2>
Excited State 96 ->111 100 ->111 102 ->111 104 ->111	28: Singlet-A -0.17672 0.55529 -0.24653 -0.23205	6.7120 eV	184.72 nm	f=0.0082	<s**2>=0.000</s**2>
Excited State 89 ->111 95 ->111 99 ->111 106 ->113 107 ->113 107 ->114 108 ->113 108 ->114	29: Singlet-A 0.13121 -0.11517 0.31140 -0.11374 -0.12504 0.46430 -0.21846 -0.13044	6.7679 eV	183.20 nm	f=0.1536	<s**2>=0.000</s**2>
Excited State 95 ->111 99 ->111 101 ->111 107 ->114 108 ->113	30: Singlet-A -0.11095 0.55704 0.17210 -0.29872 0.10100	6.7756 eV	182.99 nm	f=0.0402	<s**2>=0.000</s**2>
Excited State 106 ->113 107 ->113 107 ->114 108 ->112	31: Singlet-A -0.13177 0.32928 0.34553 0.15817	6.7925 eV	182.53 nm	f=0.2898	<s**2>=0.000</s**2>

108 ->113 109 ->114	0.32817 -0.10573				
Excited State 89 ->111 90 ->111 94 ->111 95 ->111 96 ->111 98 ->111 100 ->111 107 ->113	32: Singlet-A 0.20516 -0.11095 0.15851 -0.23256 0.22187 0.46593 0.10010 0.15739	6.8030 eV	182.25 nm	f=0.0250	<s**2>=0.000</s**2>
Excited State 91 ->111 92 ->111 97 ->111 108 ->113	33: Singlet-A 0.42498 0.48113 -0.11296 -0.11698	6.8324 eV	181.47 nm	f=0.0082	<s**2>=0.000</s**2>
Excited State 106 ->113 107 ->114	34: Singlet-A 0.63706 0.19270	6.8698 eV	180.48 nm	f=0.0223	<s**2>=0.000</s**2>
Excited State 88 ->111 89 ->111 91 ->111 94 ->111 95 ->111 96 ->111 97 ->111 98 ->111 100 ->111	35: Singlet-A 0.13767 0.33108 -0.22257 -0.20231 0.27322 0.19113 -0.27584 -0.15015 0.13321	6.9147 eV	179.31 nm	f=0.0018	<s**2>=0.000</s**2>
Excited State 107 ->113 109 ->118 110 ->117 110 ->118	36: Singlet-A 0.12377 -0.13652 0.29116 0.56043	6.9357 eV	178.76 nm	f=0.0292	<s**2>=0.000</s**2>
Excited State 89 ->111 96 ->111 97 ->111 100 ->111 106 ->114 107 ->112 107 ->113 108 ->113 109 ->115	37: Singlet-A -0.23594 0.29690 -0.22296 0.10065 -0.19150 0.21542 -0.26320 0.12779 0.19469	6.9627 eV	178.07 nm	f=0.2370	<s**2>=0.000</s**2>

Excited State 87 ->111 88 ->111 91 ->111 93 ->111 94 ->111 95 ->111	38: Singlet-A -0.17201 0.10674 0.32228 0.10314 0.15231 -0.10641 -0.25900	7.0199 eV	176.62 nm	f=0.1654	<s**2>=0.000</s**2>
96 ->111 106 ->114 107 ->112 107 ->113 108 ->113 109 ->115	-0.22367 -0.18966 0.16033 -0.14940 0.11502 0.14616				
Excited State 89 ->111 90 ->111 94 ->111 95 ->111 96 ->111 99 ->111	39: Singlet-A 0.17041 -0.10976 0.54629 0.30472 -0.13863 0.11253	7.0620 eV	175.56 nm	f=0.0160	<s**2>=0.000</s**2>
Excited State 106 ->114 107 ->112 108 ->113 108 ->115 109 ->116	40: Singlet-A 0.58590 0.11581 0.11237 0.16551 -0.17887	7.0693 eV	175.38 nm	f=0.0813	<s**2>=0.000</s**2>
Excited State 108 ->115	41: Singlet-A 0.65261	7.1285 eV	173.93 nm	f=0.0374	<s**2>=0.000</s**2>
Excited State 107 ->115 110 ->117 110 ->119 110 ->120 110 ->121 110 ->122	42: Singlet-A 0.10088 -0.24641 0.30772 0.50702 -0.11218 0.10067	7.2166 eV	171.80 nm	f=0.0095	<s**2>=0.000</s**2>
Excited State 105 ->112	43: Singlet-A 0.69118	7.2309 eV	171.46 nm	f=0.0001	<s**2>=0.000</s**2>
Excited State 87 ->111 88 ->111 90 ->111 91 ->111 92 ->111 93 ->111	44: Singlet-A -0.20066 0.31295 0.28424 0.30785 -0.29614 -0.14081	7.2986 eV	169.87 nm	f=0.0216	<s**2>=0.000</s**2>

96 - >111	0.18429				
Excited State 88 ->111 90 ->111	45: Singlet-A -0.13596 -0.13706 0.14899	7.3177 eV	169.43 nm	f=0.1218	<s**2>=0.000</s**2>
107 ->115	0.56801				
			1 (0,00	0 0 0 1 0 1	
Excited State	46: Singlet-A	7.3370 eV	168.99 nm	f=0.0181	<s**2>=0.000</s**2>
88 ->111	0.25134				
89 ->111	-0.13868				
90 ->111	0.34279				
91 ->111	-0.28421				
92 ->111	0.26049				
94 ->111	0.13994				
95 ->111	-0.13512				
107 ->115	0.21769				
Excited State	47 [.] Singlet-A	7 3783 eV	168 04 nm	f=0.0118	<s**2>=0 000</s**2>
108 ->116	-0.18232	,,	1001011111	1 0.0110	2 - 0.000
110 ->117	0.25604				
110 ->118	-0.11125				
110 ->119	-0.13232				
110 ->121	-0.24133				
110 ->122	0.51624				
Excited State	48 [.] Singlet-A	7 3875 eV	167 83 nm	f=0.0151	<s**2>=0 000</s**2>
103 ->112	-0.19980	1.5075 07	107.00 1111	1 0.0101	5 2 0.000
107 ->116	0.10541				
108 ->116	0.59367				
110 ->122	0.12873				
Excited State	10: Singlet A	7 4710 N	165 02 mm	$f_{-0.0014}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
110 ->117	49. Singlet-A	/.4/19 ev	103.95 1111	1-0.0014	<52=0.000
110 ->117	-0 28372				
110 -> 120	0.26382				
110 ->120	-0.30540				
110 ->123	0.15003				
E : 10, (50 G: 1 / A		165.50	6 0 000	< <u> <</u>
Excited State $00 > 112$	50: Singlet-A	/.48/5 eV	165.59 nm	I=0.0029	<5**2>=0.000
90 - 2112 91 > 112	0.10089				
95 ->112	0.15952				
95 ->112	-0 13343				
96 ->112	-0.18573				
98 ->112	0.24792				
98 ->113	-0.12477				
103 ->112	0.35768				
103 ->113	-0.12213				
107 ->115	-0.10086				

108 ->116 0.14697

5. References for supporting information

(1) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

(2) Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2009**.

(3) Becke, A. D. Phys. Rev. A 1988, 38, 3098.

(4) Lee; C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

(5) Kim, B.; Yeom, H. R.; Choi, W. Y.; Kim, J. Y.; Yang, C. Tetrahedron 2012, 68, 6696.