SUPPORTING INFORMATION

Red-Green-Blue Printing using Luminescence-Upconversion Inks

Jeevan Manikyarao Meruga^{*1}, Aravind Baride², William Cross¹, P. Stanley May² and Jon J. Kellar¹

¹Materials Engineering and Science Program, South Dakota School of Mines & Technology, 515 E. St. Joseph St, Rapid City, SD, USA 57701

²Department of Chemistry, University of South Dakota, 414 E Clark St, Vermillion, SD, USA 57069

Email: Stanley.May@usd.edu

Figure S1. Schematic representation of synthetic route used to produce doped β -NaYF₄ nanocrystals.

Figure S2. TEM images of nanocrystals used to activate red (β -NaYF₄:10%Er³⁺, 2%Tm³⁺), green (β -NaYF₄: 17%Yb³⁺, 3%Er³⁺), and blue (β -NaYF₄: 25%Yb³⁺, 0.3%Tm³⁺) inks.

Figure S3. High-resolution scanning electron microscope (HRSEM) micrograph of the cross section of three passes of blue ink on glass slide with a thickness of $\sim 4 \mu m$. The UCNC can be clearly seen to be homogeneously distributed throughout the cross-section.