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Figure S1. Transmission electron microscopy image (a) and size distribution (b) of ITO nanocrystals. Inset scale bar is 
4 nm. 
 

 
	
  
Figure S2. Transmission electron microscopy image (a) and size distribution (b) of CeO2 nanocrystals. 
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Figure S3. Cross-sectional scanning electron micrographs of ITO nanocrystal films: unarchitectured films (a) are 
shown alongside those assembled into hierarchically porous films using PDMA20k-b-PS20k (b), PDMA10k-b-PS60k (c), or 
PDMA20k-b-PS60k (d) block copolymer as architecture-directing agents. All scale bars are 200 nm. 
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Figure S4. Nyquist plot for the plasticized polymer electrolyte (PPE) (black line and data points) and fit calculated 
using the equivalent circuit model shown (inset and red line). Q1 and Q2 are constant phase elements, and R2 is a 
resistor. To provide a direct comparison to the PPE films used for devices, a dried film of PPE was pressed between 
two ITO-coated substrates which functioned as the working and counter electrodes using a two-electrode configuration. 
A 50 µm spacer defined the electrolyte thickness. Electrochemical impedance spectroscopy was obtained in the 
frequency range of 1 MHz to 1 Hz with 10 frequency points per logarithmic decade and an oscillation voltage of 10 
mV. The above Nyquist plot was used to determine the room-temperature ionic conductivity for the PPE, σ = 1.1x10-7 
S cm-1.  
 
 
 
 

 
Figure S5. Cyclic voltammetry for the same PPE film as in Figure S4 at 10 mV s-1 scan rate in the potential range of –2 
to +2 V. The first of 5 cycles has been omitted. The potential stability window for the PPE was taken to be –1.8 to +1.8 
V.   
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Figure S6. Chronoamperometry data for all ITO nanocrystal films: unarchitectured films (a) are shown alongside those 
assembled into hierarchically porous films using PDMA20k-b-PS20k (b), PDMA10k-b-PS60k (c), or PDMA20k-b-PS60k (d) 
block copolymers as architecture-directing agents. A voltage swing of 1.8 and 4.0 V vs. Li/Li+ was used for all films.  
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Figure S7. Cyclic voltammetry for ITO films at a 100 mV s-1 scan rate over a potential range of 1.8 to 4 V vs. Li/Li+. 
Data are shown for unarchitectured films (a) alongside those assembled into hierarchically porous films using 
PDMA20k-b-PS20k (b), PDMA10k-b-PS60k (c), or PDMA20k-b-PS60k (d) block copolymers as architecture-directing 
agents. Charging capacity was determined by integration of the charging curve for each cycle after discarding the first 
and last cycle of the six cycles measured.     
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Figure S8. Cyclic voltammetry for ITO films at a 10 mV s-1 scan rate over a potential range of 1.8 to 4 V vs. Li/Li+. 
Data are shown for unarchitectured films (a) alongside those assembled into hierarchically porous films using 
PDMA20k-b-PS20k (b), PDMA10k-b-PS60k (c), or PDMA20k-b-PS60k (d) block copolymers as architecture-directing 
agents. Charging capacity was determined by integration of the charging curve for each cycle after discarding the first 
and last cycle of the six cycles measured.   
 
 
 
 
 
 
 

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C
This journal is © The Royal Society of Chemistry 2014



 
 
Figure S9. Cyclic voltammetry for ITO films at a 1 mV s-1 scan rate over a potential range of 1.8 to 4 V vs. Li/Li+. 
Data are shown for unarchitectured films (a) alongside those assembled into hierarchically porous films using 
PDMA20k-b-PS20k (b), PDMA10k-b-PS60k (c), or PDMA20k-b-PS60k (d) block copolymers as architecture-directing 
agents. Charging capacity was determined by integration of the charging curve for each cycle after discarding the first 
and last cycle of the six cycles measured.   
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Figure S10. Optical modulation in solid-state NIR-electrochromic devices: ~258 nm unarchitectured ITO active layers 
(a) are shown alongside ~309 nm hierarchically porous ITO active layers (b) generated using PDMA20k-b-PS20k 
architecture-directing agents. An initial break-in step was carried out by applying a –4 V bias across the device; ITO 
charging at that potential after 6 min signifies the maximum extent of NIR-blocking available to the device (dotted 
blue). Under normal operation, SS devices were switched between –1.8 V and +1.8 V to achieve NIR-blocking (solid 
blue) and NIR-transmissive (solid red) states, respectively. The absolute transmittance traces shown here were 
normalized to the trace at +1.8 V (i.e., SSoff in Figure 7 in the main text) to show ΔT in the NIR-transmissive and NIR-
blocking states in Figure 7. 
 
 
 
 
 
 
 

 
 
Figure S11. Chronoamperometry data for solid-state devices configured with NIR-switchable ITO nanocrystal 
electrodes. Data are shown for an unarchitectured ITO NC film (a) as well as a hierarchically porous film using 
PDMA20k-b-PS20k block copolymer as an architecture-directing agent. (b). A two-electrode configuration was used with 
–1.8 and +1.8 voltage swings for 4 min and 1 min, respectively.  
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Figure S12. Cyclic voltammetry for solid-state devices at different scan rates. The top row shows cyclic 
voltammograms (CVs) for an unarchitectured ITO device, while the bottom row shows CVs for a PDMA20k-b-PS20k–
architectured device obtained at three scan rates: 100 mV s-1 (left column), 10 mV s-1  (middle column), and 1 mV s-1  
(right column). Charging capacity was determined by integration of the charging curve for each cycle after discarding 
the first and last of six cycles measured.  
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Additional Technical Notes: 
 
(1) Units of F (Farads) – defined as the charge in Coulombs that a capacitor will accept for the potential across it to 
change by 1 V – are common when reporting data for the charging (and discharging) of electrochemical capacitors. For 
our work, however, we were interested in determining the specific capacity of our electrodes, which we reported in 
units of C/g. We calculated specific capacity by integrating the i-V curves as described in the main text  over the 
potential range of the measurement (representing the total amount of stored charge), then normalizing to the mass of 
ITO on the electrode. As our measurements had a voltage sweep greater than 1 V, this value was never referred to as a 
capacitance. Our use of specific capacity was useful in quantifying differences in the optical performance of the 
different architectured mesoporous ITO NC electrodes and polymer electrolyte-infiltrated heteromaterial frameworks 
over the wide voltage range needed for device switching, as described in detail in the main text. 
 
(2) Unarchitectured NC-only films have more surface area (theoretically) than any of the architectured films, since 
there are more ITO nanocrystals per unit volume. Nevertheless, each of the architectured films showed greater specific 
capacity than the unarchitectured ITO NC films. Based on our data, we reasoned that this increase is due to 
improvements in how the mesoporous films charge (and discharge) the electrical double layer (EDL) during switching. 
In the unarchitectured NC-only films, there are only micropores (0.5-2 nm) and thus significant overlap in the EDLs, 
which has been reported to limit ion transport and overall charge capacity (see for example, JACS 2008, 130, 2730; 
JACS 2009, 131, 1802). We hypothesize that all of our architecture-directing agents regularly spaces the ITO in space 
so as to minimize charging inefficiencies related to overlapping double layers. It may yet be possible to reduce the 
dimensions of the mesopores so that critical behavior is revealed deliberately (e.g., mesopores spanning a range of 2-10 
nm). For the present work, however, the larger end of the mesopore sizes was used and thought to aid in back-filling 
with the plasticized polymer electrolyte (PPE). 
 
(3) The extent of PPE oxidation was monitored during the break-in step using spectroelectrochemistry. When a 
potential bias of –4 V is applied across the device, oxidation of the PPE with coupled charge injection into the ITO 
layer leads to plasmon aborption, observed as NIR blocking in the optical spectrum. Qualitatively, the plasmon 
absorption can be monitored until no further change in the optical spectrum occurs, at which point sufficient PPE 
oxidation has occurred. This state of the device is summarized in Figure 7. 
 
(4)	
  Long-term cycling or photostability of these devices is not yet known; nonetheless, our materials were selected with 
long device lifetimes in mind. Polyvinyl butyral has been used extensively in the glass lamination industry due to its 
high photo- and thermal stability. Our manuscript presents data and conclusions inferred from at least 10 cycles for 
these devices, which was sufficient to observe differences in the utilization of active material. 
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