Supporting Information for

Photophysical, Electrochemical and Solid State Properties of Diketopyrrolopyrrole-based Molecular Materials: Importance of Donor Group

Joydeep Dhar, N. Venkatramaiah, Anitha A and Satish Patil*

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012 E-mail: <u>satish@sscu.iisc.ernet.in</u>

Table of contents	page no
Synthesis of DPP Derivatives	2
Figure S1: ESI Mass spectra of three DPP derivatives	3
Figure S2: ¹ H and ¹³ C NMR spectra of PDPP-Hex	4
Figure S3: ¹ H and ¹³ C NMR spectra of TDPP-Hex	5
Figure S4: ¹ H and ¹³ C NMR spectra of SeDPP-Hex	6
Figure S5: Absorption spectra overlapped with de-convoluted Low energy band of PDPP-Hex	7
Figure S6: TD-DFT simulated absorption spectra of three DPP molecules	7
Figure S7: Concentration dependent absorption spectra of TDPP-Hex and SeDPP-	Hex 8
Figure S8: Torsional angle of three DPP derivatives	9
Figure S9: HRTEM image of the nano structure observed from two DPP derivatives with plausible packing diagram.	10
Table S1. Summary of bond length and torsion data of DPP derivatives varied with different donor units.	11
Table S2. Summary of the ' d ' spacing calculated from HR-TEM image of three DPP molecules.	11

Synthesis of DPP Derivatives:

Synthesis of PDPP-Hex: 3,6-diphenylpyrrolo[3,4-c]pyrrole-1,4(*2H*,5*H*)-dione (PDPP) (0.21 g, 0.73 mmol) was dissolved in 30:15 mL of NMP/DMF mixture and stirred for 30 min in inert atmosphere. Then *t*-BuOK (0.19 g, 1.7 mmol) was added to it and heated at 90 °C for 1 h followed by dropwise addition of 1-bromohexane (0.42 mg, 2.56 mmol) dissolved in DMF. The reaction was allowed to continue for next 20 h at 125°C. The reaction was quenched by addition of water. NMP/DMF solvent mixture was distilled out. The compound was eluted by hexane/ethyl acetate in column chromatography (yield: 64%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.79-7.82 (m, 4H), 7.55-7.5 (m, 6H), 3.75-3.72 (t, 4H), 1.62-1.53 (m, 4H),1.26-1.16 (m, 12H), 0.83-0.8 (t, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 162.74, 148.53, 131.10, 128.9, 128.71, 128.33, 41.92, 31.21, 29.71, 29.41, 26.39, 22.46, 13.94. Elemental Analysis: Calc. (%): (C₃₀H₃₆N₂O₂): C, 78.91; H, 7.95; N, 6.13 Found (%): C, 79.16; H, 8.03; N, 5.9. (ESI-MS) calculated for C₃₀H₃₆N₂O₂ (M)⁺: m/z: 457.5

Synthesis of TDPP-Hex: 3,6-di(thiophen-2-yl)-pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (TDPP) (0.5gm, 1.66 mmol) and potassium carbonate (0.81gm, 5.83 mmol) were taken in DMF (20 mL), heated at 90 °C for 1h. Then slowly 1-bromohexane was added to the reaction mixture and temperature was raised to 125 °C and continued for next 20 h. Later DMF was distilled out, washed with water and extracted in CH₂Cl₂. The organic layer was passed through Na₂SO₄ and concentrated. The crude product was purified by column chromatography (yield: 78%). ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.93 (d, J = 3.9 Hz, 2H), 7.64 (d, J= 5.1 Hz, 2H), 7.29 (d, J = 4.9, 4.0 Hz, 2H), 4.12–4.01 (m, 4H), 1.80–1.69 (m, 4H), 1.48–1.37 (m, 4H), 1.36–1.26 (m, 8H), 0.88 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 161.38, 140.03, 135.22, 130.63, 129.80, 128.59, 107.73, 42.22, 31.40, 29.91, 26.53, 22.53, 13.98. Elemental Analysis: (C₂₆H₃₂N₂O₂S₂): Calc. (%): C, 66.63; H, 6.88; N, 5.98; S, 13.68 Found (%): C, 65.43; H, 6.43; N, 5.71; S, 12.54. (ESI-MS) calculated for C₂₆H₃₂N₂O₂S₂ (M)⁺: m/z; 469.4

Synthesis of SeDPP-Hex:2,5-dihexyl-3,6-di(selenophen-2-yl)pyrrolo[3,4-*c*]pyrrole-1,4(*2H*,5*H*)-dione (SeDPP) (0.5 g, 1.27 mmol) and potassium carbonate (0.6 g, 4.44 mmol) were taken in a round-bottomed flask in 30 mL of DMF. It was heated at 90 °C for 1 h. Then 1-bromohexane was added drop wise to the reaction mixture and temperature was raised to 125 °C and stirred for 20 h in argon atmosphere. Water was added to quench the reaction. Solvent was distilled off and product was purified by column chromatography using hexane/ethyl acetate as eluent. (yield 45%). ¹H NMR (400 MHz, CDCl₃, ppm) δ 8.87 (d, J = 3.9 Hz, 2H), 8.40 (d, J= 5.1 Hz, 2H), 7.50 (d, J = 4.9, 4.0 Hz, 2H), 4.01 (t, 4H), 1.75 (m, 4H), 1.45–1.38 (m, 4H), 1.36–1.25 (m, 8H), 0.88 (t, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃, ppm): δ 161.56, 141.08, 137.18, 136.52, 133.96, 131.00, 107.84, 42.19, 31.49, 30.00, 29.71, 26.61, 22.56, 14.00 ppm. (ESI-MS) calculated for C₂₆H₃₂N₂O₂Se₂ (M)⁺: m/z: 565.2

Figure S1. ESI Mass spectra of three DPP derivatives.

Figure S2. ¹H and ¹³C NMR spectra of PDPP-Hex.

Figure S3. ¹H and ¹³C NMR spectra of TDPP-Hex.

Figure S4. ¹H and ¹³C NMR spectra of SeDPP-Hex.

Figure S5. Absorption spectra overlapped with deconvoluted low energy band of PDPP-Hex.

Figure S6. TD-DFT simulated absorption spectra of three DPP molecules.

Figure S7: Room temperature concentration dependent absorption spectra of TDPP-Hex and SeDPP-Hex.

Figure S8: Torsional angle of three DPP derivatives.

Figure S9: HRTEM image of the nanostructure observed from two DPP derivatives with plausible packing diagram.

Table S1: Summary	of bond	length	and	torsion	data	of DPP	derivatives	varied	with	different
donor units.										

	Inter-ring	C-N	C-X	Torsion
	C-C (Å)	(Å)	(X=S, Se)	(°)
			(Å)	
PDPP- Hex	1.46	1.39, 1.42	-	33
TDPP- Hex	1.43	1.39,1.41	1.69, 1.72	9
SeDPP- Hex	1.44	1.38, 1.41	1.84, 1.88	12

Table S2: Summary of the 'd' spacing calculated from HR-TEM image of three DPP molecules.

	PDPP-Hex	TDPP-Hex	SeDPP-Hex
'd' spacings (Å)	9.7,10.1, 10.4, 11, 11.8	10.1, 10.7	10.1, 11.0