Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Microemulsion-based synthesis of $V_{1-x}W_xO_2@SiO_2$ core-shell structures for smart window applications

Yijie Zhou¹, Shidong Ji¹, Yamei Li¹, Yanfeng Gao^{1,2*}, Hongjie Luo^{1,2}, Ping Jin^{1*}

- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai institute of Ceramics, Chinese Academy of Sciences, Dingxi 1295, Changning, Shanghai, 200050, China
- 2 School of Materials Science and Engineering, Shanghai University, Shangda Rd. 99, Baoshan, Shanghai 200444, China
- * Author for correspondence. Email: yfgao@mail.sic.ac.cn, Tel/Fax: +86-21-5241-5270; Email: p-jin@mail.sic.ac.cn, Tel/Fax: +86-21-6990-6213

Supporting Information

At the end part of this paper, there referred some of our latest results and one of them can be given as following:

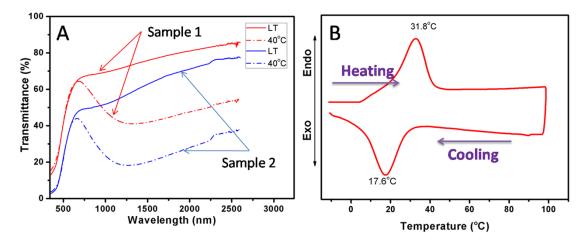


Figure S1(A) Optical transmittance spectra of our recent thermochromic foils;

(B) DSC curves corresponding to the Samples;

Sample 1, Sample 2 were prepared with the same thermochromic nanopowder;

LT indicates that the sample was first cooled in the refrigerator for 10 min before optical measurement;

40°C indicates the keep the temperature of measurement at 40 °C.

Table S1 Phase transition temperature and optical parameters of Sample 1 and Sample 2

Sample	Tc (°C)	T _{Lum} (%)	T Sol (%)	$_{\Delta}T_{2000nm}$	$_{\Delta}T_{1500nm}$	ΔT Sol
		T>Tc T <tc< th=""><th>T>Tc T<tc< th=""><th>(%)</th><th>(%)</th><th>(%)</th></tc<></th></tc<>	T>Tc T <tc< th=""><th>(%)</th><th>(%)</th><th>(%)</th></tc<>	(%)	(%)	(%)
1	31.8	52.57 53.79	49.21 59.35	33.5	34.0	10.14
2	31.8	34.05 34.36	28.19 42.73	43.0	42.7	14.38