Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supporting information for Solid-state electrochromic devices: relationship of contrast as a function of device preparation parameters

By: Amrita Kumar^a, Michael T. Otley^a, Fahad Alhasmi Alamar^b, Yumin Zhu^a, Blaise G. Arden^a and Gregory A. Sotzing^{*a,b}

Corresponding Author: Gregory Sotzing*

Contact :sotzing@mail.ims.uconn.edu, tel: 860-486-4619, fax: 860-486-4745,

University of Connecticut, Department of Chemistry, Polymer Program, and Department of

Physics, 97 North Eagleville Road, Storrs, CT 06269-3136

Photopic contrast as a function of effective polymer layer thickness for PBPMOM-ProDOT using the *in situ* method:

Fig. S1 Photopic contrast as a function of effective polymer layer thickness for 2.5 wt% BPMOM-ProDOT using the *in situ* method.

. **Fig. S2** a) Colored state and b) Bleached state for an electrochromic window with a 4cm² active area using the *in situ* procedure with 2.5 wt% ProDOT-Me₂ in the electrolyte gel.

Diffusion study: Diffusion coefficients of different concentrations of EDOT, ProDOT-Me₂, and BPMOM-ProDOT were performed following our previous work.¹

Diffusion coefficient of different concentrations of ProDOT-Me₂ in solid gel electrolyte:

Fig. S3: Diffusion coefficient of ProDOT-Me $_2$ at different concentrations (w/w) inside the gel matrix.

Reference:

1. F. A. Alhashmi, M. T. Otley, Y. Ding, G. A. Sotzing, Adv Mater, 2013, 25, 625