# **Electronic Supporting Information**

## ESI

# Oxadiazole based bipolar host materials employing planarized triarylamine donors for RGB PHOLEDs with low efficiency roll-off<sup>†</sup>

Paul Kautny,<sup>a</sup> Daniel Lumpi,<sup>\*a</sup> Yanping Wang,<sup>b</sup> Antoine Tissot,<sup>c</sup>

Johannes Bintinger,<sup>a</sup> Ernst Horkel,<sup>a</sup> Berthold Stöger,<sup>d</sup> Christian Hametner,<sup>a</sup>

Hans Hagemann,<sup>c</sup> Dongge Ma,<sup>b</sup> and Johannes Fröhlich<sup>a</sup>

daniel.lumpi@tuwien.ac.at

<sup>a</sup> Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria

<sup>b</sup> State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China

<sup>°</sup> Département de Chimie Physique, Université de Genève, 30, quai E. Ansermet, 1211 Geneva 4, Switzerland

<sup>d</sup> Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164, A-1060 Vienna, Austria

## Content

- A.NMR Spectra
- **B.TGA/DSC**
- **C.Cyclic Voltammetry**
- **D. Phosphorescence Measurements**
- **E. DFT Calculations**
- F. EL Spectra
- **G.Crystal Structure of Compound 3c**



#### A)NMR Spectra

Figure S1. Proton NMR spectrum of compound 1ii.



Figure S2. Carbon NMR spectrum of compound 1ii.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is  $\ensuremath{\mathbb{C}}$  The Royal Society of Chemistry 2014



Figure S3. Proton NMR spectrum of compound 1iii.



Figure S4. Carbon NMR spectrum of compound 1iii.



Figure S 5. Proton NMR spectrum of compound **3c**.



Figure S 6. Carbon NMR spectrum of compound 3c.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2014



Figure S7. Proton NMR spectrum of compound o-PCzPOXD (5b).



Figure S8. Carbon NMR spectrum of compound o-PCzPOXD (5b).



Figure S9. Proton NMR spectrum of compound o-ICzPOXD (5c).





Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is C The Royal Society of Chemistry 2014



FigureS12. Carbon NMR spectrum of compound 7i.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2014



Figure S14. Carbon NMR spectrum of compound 7ii.



Figure S15. Proton NMR spectrum of compound o-TPATOXD (8a).



Figure S16. Carbon NMR spectrum of compound o-TPATOXD (8a).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is The Royal Society of Chemistry 2014



Figure S17. Proton NMR spectrum of compound o-PCzTOXD (8b).







Figure S 19. Proton NMR spectrum of compound o-ICzTOXD (8c).



Figure S 20. Carbon NMR spectrum of compound o-ICzTOXD (8c).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2014



Figure S21. Proton NMR spectrum of compound o-CzTOXD (8d).



Figure S22. Carbon NMR spectrum of compound o-CzTOXD (8d).



**B)TGA/DSC** 

Figure S23. DSC and TG trace of o-PCzPOXD (5b) recorded at a heating rate of 5 °C min<sup>-1</sup>.



Figure S24. DSC and TG trace of o-ICzPOXD (5c) recorded at a heating rate of 5 °C min<sup>-1</sup>.



Figure S25. DSC and TG trace of o-TPATOXD (8a) recorded at a heating rate of 5 °C min<sup>-1</sup>.



Figure S26. DSC and TG trace of o-PCzTOXD (8b) recorded at a heating rate of 5 °C min<sup>-1</sup>.



Figure S27. DSC and TG trace of o-ICzTOXD (8c) recorded at a heating rate of 5 °C min<sup>-1</sup>.



Figure S28. DSC and TG trace of o-CzTOXD (8d) recorded at a heating rate of 5 °C min<sup>-1</sup>.

## **C)Cyclic Voltammetry**



Figure S29. Cyclic voltammogram of o-PCzPOXD (5b).



Figure S30. Cyclic voltammogram of o-ICzPOXD (5c).



Figure S31. Cyclic voltammogram of o-TPATOXD (8a).



Figure S32. Cyclic voltammogram of o-PCzTOXD (8b).



Figure S33. Cyclic voltammogram of o-ICzTOXD (8c).



Figure S34. Cyclic voltammogram of o-CzTOXD (8d).



#### **D)**Phosphorescence Measurements

Figure S35. Singlet (red) and triplet (blue) emission spectra at 77 K with two different gratings to obtain higher resolution for the triplet emission (green).

#### Lifetime Measurements

The singlet and triplet lifetimes of target materials are summarized in Table S2. Some samples present single exponential decay, others a more complex behavior; results are derived from single and double exponential fits of the data. Note that the errors for the double exponential fits are significant.

| Sample    | Singlet Lifetime |               | Triplet Lifetime |
|-----------|------------------|---------------|------------------|
|           | $\tau_1$ [ns]    | $\tau_2 [ns]$ | τ [ms]           |
| o-TPAPOXD | 3.25(0.003)      |               | ~790             |
| o-PCzPOXD | 0.90(0.04)       | 2.0(45)       | 335(6)           |
| o-ICzPOXD | 0.66(0.017)      | 64.7(12)      | 349(2)           |
| o-TPATOXD | 1.57(0.002)      |               | 12.3             |
| o-PCzTOXD | 0.84(0.004)      |               | 8.3              |
| o-ICzTOXD | 0.53(0.009)      |               | 8.2              |
| o-CzTOXD  | 1.28(0.004)      | 2.02(0.17)    | 11.0             |

Table S2. Singlet and triplet lifetimes measured in toluene solutions at ambient temperature.

#### Experimental Parameter

The determination of the emission lifetime at room temperature was done with Dr. François-Alexandre Mianney using a picosecond 375 nm laser source in conjunction with a detection set-up as described in (Muller, P. A., Högemann, C., Allonas, X., Jacques, P., Vauthey, E., Chem. Phys. Letters 326 (2000) 321.) Low temperature experiments were performed in frozen dilute toluene solutions using a Janis closed cycle cryostat (at 5 K) and a liquid nitrogen dewar fitted with quartz windows for measurements at ~80 K.

Time resolved experiments were obtained using a Quantel Brilliant tripled Nd-YAG laser (355 nm, 20 Hz repetition rate, pulse width ~5ns). Spectra were measured using a SPEX 270 monochromator equipped with both photomultiplier and CCD. This set-up is controlled using a home-built Labview-based program which allows using different instruments such as photon counting, oscilloscope, and additional mechanical shutters.

Additional absorption measurements were performed with a Cary 5000 instrument at room temperature, as well as emission and excitation spectra at room temperature and liquid nitrogen temperature using a Fluorolog FL3-22 instrument.

#### **E) DFT Calculations**



Figure S36. HOMO (bottom) and LUMO (top) of **o-PCzTOXD** (left) and **o-ICzTOXD** (right).





Figure S367. HOMO (bottom) and LUMO (top) of o-CzTOXD



#### F) EL Spectra



Figure S38. Electroluminescence (EL) spectra of all devices discussed in this study.

#### **G)**Crystal Structure of Compound 3c



Figure S39. Molecular structure of **3c**; B, C, N, and O atoms are represented by yellow, white, blue and red ellipsoids drawn at 50% probability levels, H atoms by spheres of arbitrary radius.