Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Enhancing the efficiency of the opto-electronic devices by the cathode modification

Ye Eun Ha,^a Gyeong Eun Lim,^a Mi Young Jo,^a Juyun Park,^b Yong-Cheol Kang,^b Sang-Jin Moon^c and

Joo Hyun Kim^a,*

^aDepartment of Polymer Engineering and ^bDepartment of Chemistry, Pukyong National University,

Busan 608-739, Korea.

^cEnergy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 305-600, Korea

*Corresponding author e-mail: jkim@pknu.ac.kr

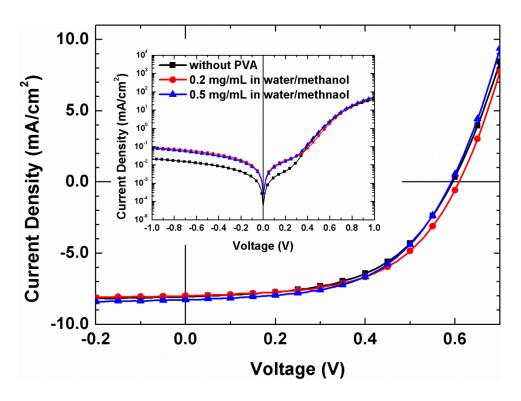


Fig. S1. Current density–voltage curves of PSCs under AM 1.5G simulated illumination with an intensity of 100 mW/cm² and under the dark condition (inset) without PVA (square) and with the PVA film (circle) prepared from a concentration of 0.2 mg/mL solution in water/methanol (2/8 by volume) mixed solvent, and 0.5 mg/mL solution in water/methanol (2/8 by volume) mixed solvent.

Table S1. The photovoltaic parameters of PSCs with the best PCE value. The averages for photovoltaic
parameters of each device are given in parentheses with mean variation.

	V _{oc} (V)	J_{sc} (mA/cm ²)	FF (%)	PCE (%)	$R_s (\Omega \cdot cm^2)^a$	$R_p (k\Omega \bullet cm^2)^b$
w/o PVA	0.59	-8.04	54.0	2.58	5.24	46.51
	(0.59 ± 0.004)	(-7.89 ± 0.19)	(54.7 ± 0.89)	(2.55 ± 0.03)	5.34	
0.2 mg/mL ^c	0.61	-7.98	55.4	2.70	2.14	11.05
	(0.61 ± 0.01)	(-8.02 ± 0.05)	(55.0 ± 0.4)	(2.70 ± 0.01)	3.14	
0.5 mg/mL ^c	0.59	-8.28	54.6	2.67	2.08	12.26
	(0.59 ± 0.01)	(-8.27 ± 0.02)	(54.1 ± 0.5)	(2.64 ± 0.03)	2.98	12.36

a: the series resistance (estimated from the device with the best PCE value).

b: the parallel resistance (estimated from the device with the best PCE value).

c: the PVA layer prepared from the solution in water/methanol (2/8 by volume).

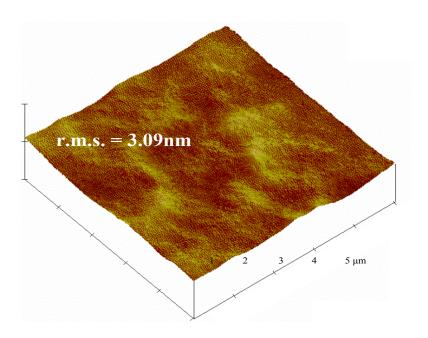


Fig. S2. AFM topography of the active layer with the PVA film spin-coated from a concentration of 0.5 mg/mL in methanol/water mixed solvent.

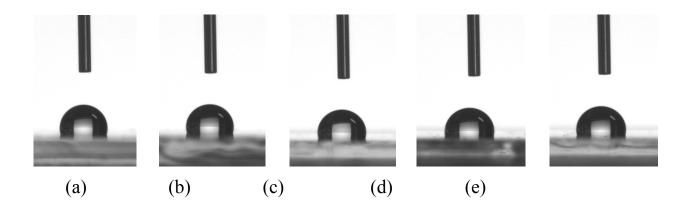


Fig. S3.The contact angle of the active layer (a) without PVA, with the PVA film prepared (b) from a concentration of 0.5 mg/mL in water/methanol (2/8 by volume) mixed solvent, (c) from a concentration of 0.2 mg/mL in DMSO/methanol (5/95 by volume) mixed solvent, (d) from a concentration of 0.5 mg/mL in DMSO/methanol (5/95 by volume) mixed solvent, and (e) from a concentration of 1.0 mg/mL in DMSO/methanol (5/95 by volume) mixed solvent.

	without PVA	0.5 mg/ml PVA solution in water/methanol	0.2 mg/ml PVA solution in DMSO/methanol	0.5 mg/ml PVA solution in DMSO/methanol	1.0 mg/ml PVA solution in DMSO/methanol
H ₂ O drop	107.09	106.16	104.83	104.12	104.02
CH ₂ I ₂ drop	69.56	69.19	63.32	63.87	63.91
γ^{d}	23.43	23.43	27.14	26.62	26.62
γ^p	0.14	0.21	0.1	0.18	0.18
γ	23.6	24.0	27.2	26.8	26.8

Table S3. The summary of the surface energy of the active layer with and without the PVA film.

 γ^d : dispersion term of surface energy γ^p : polar term of surface energy γ : total of surface energy