Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI)

Preparation and ion recognition features of porphyrin-chalcone type compounds as efficient red-fluorescent materials

Nuno M. M. Moura,^{*a,b,c*} Cristina Núñez,^{**b,d,e*} M. Amparo F. Faustino,^{*a*} José A. S. Cavaleiro,^{*a*} M. Graça P. M. S. Neves,^{**a*} José Luis Capelo,^{*b,c*} Carlos Lodeiro^{**b,c*}

Table of Contents

I - NMR and IV spectra

II - Photophysical characterization data

- **III** Metal ion titrations data
- *IV* NMR titrations
- V MALDI-TOF-MS titrations data

^a Chemistry Department and QOPNA, University of Aveiro, Campus Universitário Santiago, 3810-193 Aveiro, Portugal.

^b BIOSCOPE Group, REQUIMTE-CQFB, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, 2829-516 Monte de Caparica, Portugal.

^c ProteoMass Scientific Society. Madan Parque. Rua dos Inventores. 2825-182. Caparica. Portugal.

^d Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, CT1 1QU Canterbury, United Kingdom.

^e Inorganic Chemistry Department, Faculty of Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain

I - NMR and IV spectra

Figure 1_SM - ¹H NMR spectrum of compound 4a.

Figure 2_SM - ¹³C NMR spectrum of compound 4a.

Figure 3_SM - Infra-red spectrum of compound 4a.

Figure 4_SM - ¹H NMR spectrum of compound 4b.

Figure 6_SM - Infra-red spectrum of compound 4b.

Figure 9_SM - Infra-red spectrum of compound 4c.

Figure $10_SM - {}^{1}H$ NMR spectrum of compound 4d.

Figure 12_SM - Infra-red spectrum of compound 4d.

Figure 13_SM - ¹H NMR spectrum of compound 4e.

Figure 15_SM – Partial COSY spectrum of compound 4e.

Figure $16_SM - {}^{13}C$ NMR spectrum of compound 4e.

Figure 17_SM - Infra-red spectrum of compound 4e.

II - Photophysical characterization data

Figure 18_SM - Absorption and normalized emission and excitation of compounds **4a** (**A**), **4b** (**B**), **4d** (**C**) and **4e** (**D**) in CHCl₃ ([**4a**] = [**4b**] = [**4d**] = [**4e**] = 2.50 x 10⁻⁶ M, $\lambda_{exc4a} = 602$ nm and $\lambda_{emiss4a} = 728$ nm; $\lambda_{exc4b} = 599$ nm and $\lambda_{emiss4b} = 728$ nm; $\lambda_{exc4d} = 601$ nm and $\lambda_{emiss4c} = 727$ nm; $\lambda_{exc4e} = 603$ nm and $\lambda_{emiss4e} = 731$ nm) and emission of spectra in solid state at room temperature.

III - Metal ion titrations data

Figure 19_SM – Spectrophotometric (**A**, **C**, **E** and **G**) and spectrofluorimetric (**B**, **D**, **F** and **H**) titrations of compounds **4a**, **4b**, **4c** and **4e** in chloroform as a function of added Zn²⁺ in acetonitrile. The insets show the absorption at 527 and 565 nm (**A**), 433 and 448 nm (**C**), 525 and 564 nm (**E**) and 526 and 564 nm (**G**); and the normalized fluorescence intensity at 634 and 728 nm (**B**), 643 and 728 nm (**D**), 630, 671 and 728 nm (**F**) and 642 and 731 nm (**H**) ([**4a**] = [**4b**] = [**4c**] = [**4e**] = 2.50 x 10⁻⁶ M; $\lambda_{exc4a} = 548$ nm, $\lambda_{exc4b} = 542$ nm, $\lambda_{exc4c} = 545$ nm, $\lambda_{exc4c} = 545$ nm).

Figure 20_SM - Ratio $(I_{norm(633nm)}/I_{norm(671 nm)}$ changes as a function of the Zn^{2+} concentration.

Figure 21_SM – Spectrophotometric (**A** and **C**) and spectrofluorimetric (**B** and **D**) titrations of compound 4d in chloroform as a function of added $Zn(NO_3)_3$ and $Zn(OTf)_2$ in acetonitrile. The insets show the absorption at 524 and 564 nm (**A**) and 526 and 670 nm (**C**); and the normalized fluorescence intensity at 645, 671 and 728 nm (**B** and **C**) ([4d] = 2.50 x 10⁻⁶ M, λ_{exc4d} = 549 nm).

Figure 22_SM - Comparative fluorescence response of chemosensor **4d** (2.50 x 10^{-6} M, $\lambda_{exc4d} = 549$ nm) to Cu²⁺, Hg²⁺, Cd²⁺ and Ag⁺ (10 equiv.) in chloroform after the addition of Zn(BF₄)₂.xH₂O (1 equiv.).

Figure 23_SM - Comparative fluorescence response of chemosensor **4d** (2.50 x 10⁻⁶ M, $\lambda_{exc4d} = 549$ nm) to Pb²⁺, Cd²⁺, Fe³⁺, Mg²⁺, Al³⁺, Ca²⁺, Cr³⁺, Hg²⁺, and Cu²⁺ (10 equiv.) after the addition of Zn(NO₃)₂.xH₂O (10 equiv.).

Figure 24_SM - Comparative absorption and fluorescence response of chemosensor **4d** in chloroform (2.50 x 10⁻⁶ M, λ_{exc4d} = 549 nm) to 1, 2, 5 and 10 equiv. of ethylenediaminetetraacetic acid (EDTA) in acetonitrile after the addition of Zn²⁺ (10 equiv.) in acetonitrile.

Figure 25_SM - Spectrophotometric (**A**, **C**, **E** and **G**) and spectrofluorimetric (**B**, **D**, **F** and **H**) titrations of compounds **4a**, **4c**, **4d** and **4e** in chloroform as a function of added Cu²⁺ in acetonitrile. The insets show the absorption at 527 and 548 nm (**A**), 525 and 550 nm (**C**), 525 and 551 nm (**E**) and 414 and 438 nm (**G**); and the normalized fluorescence intensity at 676 and 728 nm (**B**), 676 and 728 nm (**D**), 671 and 728 nm (**F**) and 673 and 731 nm (**H**) (**[4a]** = **[4c]** = **[4d]** = **[4e]** = 2.50 x 10⁻⁶ M; $\lambda_{exc4a} = 548$ nm, $\lambda_{exc4c} = 545$ nm, $\lambda_{exc4d} = 549$ nm, $\lambda_{exc4e} = 545$ nm).

Figure 26_SM – Spectrophotometric (**A**, **C**, **E** and **G**) and spectrofluorimetric (**B**, **D**, **F** and **H**) titrations of compounds **4a**, **4b**, **4c** and **4d** in chloroform as a function of added Hg²⁺ in acetonitrile. The insets show the absorption at 435 and 449 nm (**A**), 433 and 452 nm (**C**), 435 and 453 nm (**E**) and 434 and 450 nm (**G**); and the normalized fluorescence intensity at 676 and 728 nm (**B**), 669 and 728 nm (**D**), 671 and 728 nm (**F**) and 671 and 727 nm (**H**) (**[4a]** = **[4b]** = **[4c]** = **[4e]** = 2.50 x 10⁻⁶ M; $\lambda_{exc4a} = 548$ nm, $\lambda_{exc4b} = 542$ nm, $\lambda_{exc4c} = 545$ nm, $\lambda_{exc4d} = 549$ nm).

Figure 27_SM - Spectrophotometric (**A**, **C**, **E**, **G** and **I**) and spectrofluorimetric (**B**, **D**, **F**, **H** and **J**) titrations of compounds 4a, 4b, 4c, 4d and 4e in chloroform as a function of added Cd²⁺ in acetonitrile. The insets show the absorption at 435 and 444 nm (**A**), 433 and 449 nm (**C**), 435 and 447 nm (**E**) 434 and 447 nm (**G**) and 438 and 479 nm (**I**); and the normalized fluorescence intensity at 676 nm (**B**), 669 and 728 nm (**D**), 671 and 728 nm (**F**), 671 (**H**) and 673 nm (**J**) (**[4a]** = **[4b]** = **[4c]** = **[4e]** = 2.50 x 10⁻⁶ M; $\lambda_{exc4a} = 548$ nm, $\lambda_{exc4b} = 542$ nm, $\lambda_{exc4c} = 545$ nm, $\lambda_{exc4d} = 549$ nm, $\lambda_{exc4e} = 545$ nm).

Figure 28_SM – Spectrophotometric (**A**, **C**, **E** and **G**) and spectrofluorimetric (**B**, **D**, **F** and **H**) titrations of compounds 4a, 4b, 4d and 4e in chloroform as a function of added Ag⁺ in acetonitrile ([4a] = [4b] = [4d] = [4e] = 2.50 x 10⁻⁶ M; $\lambda_{exc4a} = 548 \text{ nm}, \lambda_{exc4b} = 542 \text{ nm}, \lambda_{exc4d} = 549 \text{ nm}, \lambda_{exc4e} = 545 \text{ nm}$).

Figure 29_SM - Spectrophotometric (**A**, **C**, **E**, **G**, **I** and **K**) and spectrofluorimetric (**B**, **D**, **F**, **H**, **J** and **L**) titrations of compound **4d** in chloroform as a function of added Mg²⁺ (**A** and **B**), Ca²⁺ (**C** and **D**), Pb²⁺ (**E** and **F**), Cr³⁺ (**G** and **H**), Fe³⁺ (**I** and **J**) and Al³⁺ (**K** and **L**) in acetonitrile. The insets show the absorption at 434 and 452 nm (**A** and **C**), 434 and 451 nm (**E**), 434 and 454 nm (**G** and **K**) and 434 and 455 nm (**I**); and the normalized fluorescence intensity at 671 nm (**B**, **D**, **F**, **H**, **J** and **L**) (**[4d]** = 2.50 x 10⁻⁶ M, λ_{exc4d} = 549 nm; [Mg²⁺] = [Ca²⁺] = [Cr³⁺] = [Fe³⁺] = [Al³⁺] = 1.00 x 10⁻³ M; [Pb²⁺] = 4.70 x 10⁻³ M). (**G** and **H**)

Figure 30_SM - Job's plot for the UV-Vis (**A**) and fluorescence emission (**B**) titration profiles of compound **4a** (2.50x10⁻⁶ M) with Zn^{2+} shows 1:1 (**4a**: Zn^{2+}) complex stoichiometry: (**A**) with respect to 433 nm and (**B**) with respect to 634 nm.

Table 1_SM - Stability constants for chemosensor **4d** in the presence of $Zn(NO_3)_2.xH_2O$, $Zn(OTf)_2.xH_2O$ Mg(OTf)_2.xH_2O, Pb(OTf)_2.xH_2O, Ca(BF_4)_2, Cr(NO_3)_3.xH_2O, Fe(NO_3)_3 and Al(NO₃)₃ in CHCl₃ for an interaction 1:1 (metal:ligand).

Compound	Interaction (M:L)	$\Sigma \log \beta$ (Abs)	$\Sigma \log \beta$ (Emiss)
	dInteraction (M:L)Σ log β (Abs)Zn(NO_3)_2.xH_2O $6.58 \pm 1.07x10^{-3}$ Zn(OTf)_2.xH_2O $6.58 \pm 2.07x10^{-3}$ Mg(OTf)_2.xH_2O $4.33 \pm 3.45x10^{-3}$ Ca(BF_4)_2 $5.75 \pm 2.21x10^{-3}$ Pb(OTf)_2.xH_2O $7.45 \pm 3.11x10^{-3}$ Cr(NO_3)_3.xH_2O $5.33 \pm 1.31x10^{-3}$ Fe(NO_3)_3 $5.94 \pm 1.84x10^{-3}$	$\begin{array}{c} 6.54 \pm 9.77 x 10^{-2} \\ 6.81 \pm 1.92 x 10^{-2} \end{array}$	
Mg(OTf) ₂ .xH ₂ O 4.33 ± 3.45 xH	$4.33 \pm 3.45 \mathrm{x10^{-3}}$	$2.78 \pm 1.47 \mathrm{x10^{-2}}$	
41	Ca(BF ₄) ₂	$5.75 \pm 2.21 \mathrm{x10^{-3}}$	$5.74 \pm 8.70 \mathrm{x10^{-3}}$
40	Pb(OTf) ₂ .xH ₂ O	$7.45 \pm 3.11 \mathrm{x10^{-3}}$	$7.54 \pm 1.30 \mathrm{x10^{-2}}$
	Cr(NO ₃) ₃ .xH ₂ O	$5.33 \pm 1.31 \mathrm{x10^{-3}}$	$5.39 \pm 5.39 ext{x10}^{-2}$
	$Fe(NO_3)_3$	$5.83 \pm 2.35 \times 10^{-3}$	$5.80 \pm 8.35 \mathrm{x10^{-3}}$
	Al(NO ₃) ₃	$5.94 \pm 1.84 \mathrm{x10^{-3}}$	$5.86 \pm 2.19 \mathrm{x} 10^{-2}$

Compound	Metal ion	LOD	LOQ
	Zn^{2+}	160 ± 10	240 ± 10
4a	Cu ²⁺	150 ± 10	950 ± 10
	Hg^{2+}	60 ± 10	260 ± 10
	Cd^{2+}	270 ± 10	1090 ± 10
	Zn^{2+}	80 ± 10	240 ± 10
4b	Cu ²⁺	70 ± 10	270 ± 10
	Hg^{2+}	230 ± 10	430 ± 10
	Cd^{2+}	270 ± 10	550 ± 10
4.0	Zn^{2+}	160 ± 10	240 ± 10
40	Cu^{2+}	70 ± 10	150 ± 10
	Hg^{2+}	190 ± 10	330 ± 10
	Cd^{2+}	180 ± 10	410 ± 10
	Ag^+	380 ± 10	780 ± 10
4d	Zn^{2+}	240 ± 10	560 ± 10
	Cu^{2+}	70 ± 10	320 ± 10
	Hg^{2+}	130 ± 10	190 ± 10
	Cd^{2+}	550 ± 10	1090 ± 10
4e	Zn^{2+}	160 ± 10	320 ± 10
	Cu^{2+}	70 ± 10	150 ± 10
	Hg^{2+}	330 ± 10	410 ± 10
	Cd^{2+}	140 ± 10	270 ± 10

Table 2_SM - Limits of detection (LOD) and quantification (LOQ) in ppb for Zn^{2+} , Cu^{2+} , Hg^{2+} , Cd^{2+} and Ag^+ with compounds **4a-e**.

IV - NMR titrations

Figure 30_SM - ¹H NMR spectra of **4c** (2.5 x 10^{-3} mM) in CDCl₃ upon addition of increasing amounts of Zn²⁺ (from 0 to 3.5 equiv) in CD₃CN.

V-MALDI-TOF-MS titrations data

Table 3_SM - Major peaks observed in the metal titration of chemosensor **4b** followed by MALDI-TOF-MS.

Metal	Stoichiometry (ligand:metal)		Dried-droplet		Layer-by-Layer
		m/z	Relative intensity (%)	m/z	Relative intensity (%)
Zn^{2+}	1:1	745.13 806.01	100.00 [4b +H] ⁺ 38.00 [(4b -2H)+Zn] ^{+•}	745.15	100.00 [4b +H] ⁺
	1:2	745.20 806.10	100.00 [4b +H] ⁺ 91.00 [(4b -2H)+Zn] ^{+•}	806.05	16.00 [(4b- 2H)+Zn]+•
Hg ²⁺	1:1	745.36	100.00 [4b +H] ⁺	744.16	100.00 [4b]+•
	1:2	745.17	100.00 [4b +H] ⁺	944.10	17.00 [(4b- 2H)+Hg]+•
Cu ²⁺	1:1	805.05	100.00 [(4b - 2H)+Cu]+•	745.13	100.00 [4b +H] ⁺
	1:2	805.05	100.00 [(4b - 2H)+Cu]+•	805.07	79.00 [(4b- 2H)+Cu] ^{+•}
Cd ²⁺	1:1	745.18	100.00 [4b +H] ⁺	745.17	100.00 [4b +H] ⁺
	1:2	745.18	100.00 [4b +H] ⁺	854.06	5.00 [(4b - 4 H)+Cd] ^{+•}
	1:1	745.13 851.01	100.00 [4b +H] ⁺ 86.00 [(4b -H)+Ag] ^{+•}	745.15	41.00 [4b +H] ⁺
Ag⁺	1:2	745.13 851.01	56.00 [4b +H] ⁺ 100.00 [(4b -H)+Ag] ^{+•}	850.96	100.00 [(4b -H)+Åg] ^{+•}

Figure 31_SM - MALDI-TOF mass spectra of compound 4b.

Figure 32_SM - MALDI-TOF mass spectra of compound **4b** after titration with 1 equiv. (above) and 2 equiv. of $Zn(BF_4)_2.xH_2O$) (below) (*dried-droplet method*).

Figure 33_SM - MALDI-TOF mass spectra of compound **4b** after titration with 1 equiv. (above) and 2 equiv. of $Hg(BF_4)_2.xH_2O$) (below) (*dried-droplet method*).

Figure 34_SM - MALDI-TOF mass spectra of compound **4b** after titration with 1 equiv. (above) and 2 equiv. of $Cu(BF_4)_2.xH_2O$) (below) (*dried-droplet method*).

Figure 35_SM - MALDI-TOF mass spectra of compound **4b** after titration with 1 equiv. (above) and 2 equiv. of $Cd(BF_4)_2.xH_2O$) (below) (*dried-droplet method*).

Figure 36_SM - MALDI-TOF mass spectra of compound **4b** after titration with 1 equiv. (above) and 2 equiv. of $Ag(BF_4).xH_2O$) (below) (*dried-droplet method*).

Figure 37_SM - MALDI-TOF mass spectra of compound 4b after titration with of $Zn(BF_4)_2.xH_2O$ (*layer-by-layer method*).

Figure 38_SM. MALDI-TOF mass spectra of compound **4b** after titration with of $Hg(BF_4)_2.xH_2O$ (*layer-by-layer method*).

Figure 39_SM - MALDI-TOF mass spectra of compound **4b** after titration with of $Cu(BF_4)_{2.x}H_2O$ (*layer-by-layer method*).

Figure 40_SM - MALDI-TOF mass spectra of compound **4b** after titration with of $Cd(BF_4)_2.xH_2O$ (*layer-by-layer method*).

Figure 41_SM - MALDI-TOF mass spectra of compound **4b** after titration with of Ag(BF₄).*x*H₂O (*layer-by-layer method*).

Metal	Stoichiometry (ligand:metal)	Dried-droplet		Layer-by-Layer		
		m/z	Relative intensity (%)	m/z	Relative intensity (%)	
Zn^{2+}	1:1	775.17 836.08	100.00 [4d +H] ⁺ 41.00 [(4d -2H)+Zn] ^{+•}	775.09	100.00 [4d +H]+	
	1:2	775.10 835.96	100.00 [4d +H] ⁺ 96.00 [(4d -3H)+Zn] ^{+•}	835.99	18.00 [(4d -3H)+Zn]+•	
Hg ²⁺	1:1	775.26	100.00 [4d +H] ⁺	775.11	100.00 [4d +H] ⁺	
	1:2	775.26	100.00 [4d +H] ⁺	974.03	17.00 [(4d- 2H)+Hg]+•	
Cu ²⁺	1:1	775.24	100.00 [4d +H] ⁺			
		835.17	21.00 [(4d- 2H)+Cu] ^{+•}			
			835.09	100.00 [(4d-	775.09	100.00 [4d +H] ⁺
	1:2	022.07	2H)+Cu]+•	835.02	54.00 [(4d- 2H)+Cu] ^{+•}	
		852.13	35.00 [(4d - 3H)+Cu+H ₂ O]+•			
Cd ²⁺	1.1	775.28	100.00 [4d +H] ⁺			
	1.1	884.20	38.00 [(4d -4H)+Cd] ^{+•}	775.09	100.00 [4d +H] ⁺	
	1.2	775.28	100.00 [4d +H] ⁺	883.95	17.00 [(4d- 5H)+Cd]+•	
	1.2	884.20	41.00 [(4d -4H)+Cd] ^{+•}			
Λq^+	1:1	775.19	100.00 [4d +H] ⁺			
		881.07	68.00 [4d +Ag]+•	775.09	30.00 [4d +H] ⁺	
лg	1.2	775.17	82.00 [4d +H] ⁺	880.92	100.00 [(4d- H)+Ag]+•	
	1.2	881.05	100.00 [4d +Ag]+•			

 Table 4_SM - Major peaks observed in the metal titration of chemosensor 4d followed by MALDI-TOF-MS.

Figure 42_SM - MALDI-TOF mass spectra of compound 4d.

Figure 43_SM - MALDI-TOF mass spectra of compound **4d** after titration with 1 equiv. (above) and 2 equiv. of $Zn(BF_4)_2.xH_2O$ (below) (*dried-droplet method*).

Figure 44_SM - MALDI-TOF mass spectra of compound **4d** after titration with 1 equiv. and 2 equiv. of $Hg(BF_4)_2 x H_2O$ (*dried-droplet method*).

Figure 45_SM - MALDI-TOF mass spectra of compound **4d** after titration with 1 equiv. (above) and 2 equiv. of $Cu(BF_4)_2.xH_2O$ (below) (*dried-droplet method*).

Figure 46_SM - MALDI-TOF mass spectra of compound **4d** after titration with 1 equiv. (above) and 2 equiv. of $Cd(BF_4)_2.xH_2O$ (below) (*dried-droplet method*).

Figure 47_SM - MALDI-TOF mass spectra of compound **4d** after titration with 1 equiv. (above) and 2 equiv. of $Ag(BF_4).xH_2O$ (below) (*dried-droplet method*).

Figure 48_SM - MALDI-TOF mass spectra of compound **4d** after titration with of $Zn(BF_4)_2.xH_2O$ (*layer-by-layer method*).

Figure 49_SM - MALDI-TOF mass spectra of compound **4d** after titration with of $Hg(BF_4)_2.xH_2O$ (*layer-by-layer method*).

Figure 50_SM - MALDI-TOF mass spectra of compound **4d** after titration with of $Cu(BF_4)_2.xH_2O$ (*layer-by-layer method*).

Figure 51_SM - MALDI-TOF mass spectra of compound **4d** after titration with of $Cd(BF_4)_{2.x}H_2O$ (*layer-by-layer method*).

Figure 52_SM - MALDI-TOF mass spectra of compound **4d** after titration with of Ag(BF₄).*x*H₂O (*layer-by-layer method*).

Figure 53_SM - MALDI-TOF mass spectra of compound 4e.

Figure 54_SM - MALDI-TOF mass spectra of compound 4e after titration with 2 equiv. of $Zn(BF_4)_2.xH_2O$ (*dried-droplet method*).

Figure 55_SM - MALDI-TOF mass spectra of compound **4e** after titration with 1 equiv. and 2 equiv. of $Hg(BF_4)_2.xH_2O$ (*dried-droplet method*).

Figure 56_SM - MALDI-TOF mass spectra of compound **4e** after titration with 1 equiv. (above) and 2 equiv. of $Cu(BF_4)_2.xH_2O$ (below) (*dried-droplet method*).

Figure 57_SM - MALDI-TOF mass spectra of compound **4e** after titration with 1 equiv. and 2 equiv. of $Cd(BF_4)_2 xH_2O$ (*dried-droplet method*).

Figure 58_SM - MALDI-TOF mass spectra of compound **4e** after titration with 1 equiv. (above) and 2 equiv. of $Ag(BF_4).xH_2O$ (below) (*dried-droplet method*).

Figure 59_SM - MALDI-TOF mass spectra of compound **4e** after titration with of $Zn(BF_4)_2.xH_2O$ (*layer-by-layer method*).

Figure 60_SM - MALDI-TOF mass spectra of compound **4e** after titration with of Hg(BF₄)₂.*x*H₂O (*layer-by-layer method*).

Figure 61_SM - MALDI-TOF mass spectra of compound **4e** after titration with of $Cu(BF_4)_2.xH_2O$ (*layer-by-layer method*).

Figure 62_SM - MALDI-TOF mass spectra of compound **4e** after titration with of $Cd(BF_4)_{2.x}H_2O$ (*layer-by-layer method*).

Figure 63_SM - MALDI-TOF mass spectra of compound **4e** after titration with of Ag(BF₄).*x*H₂O (*layer-by-layer method*).