Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2014

# Pulsed laser writing of holographic nanosensors

A. K. Yetisen, †a\* M. M. Qasim, †b\* S. Nosheen, b T. D. Wilkinson, b and C. R. Lowe a

- <sup>a</sup> Department of Chemical Engineering and Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, UK
- <sup>b</sup> Centre of Molecular Materials for Photonics and Electronics, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
- \* Corresponding authors: qmm20@cam.ac.uk and ay283@cam.ac.uk
- † Equal contribution

#### **Preparation of the Recording Medium**

Composition: HEMA (99.5 mol%), TACPP porphyrin (0.5 mol%) and DMPA hydrogel.

(99% solid)

## Porphyrin (TACPP 2) (in DCM, 80 mg/mL)

The initial solvent was DCM, and it was evaporated and replaced by THF.

Total volume needed to make a full microscope slide of hydrogel:  $200\mu L$ 

**Table.** Composition of the polymer

| Material | MW (g/mol) | Molarity (mol) | Molarity (%) |
|----------|------------|----------------|--------------|
| НЕМА     | 130.14     | 0.00995        | 99.5         |
| TACPP    | 1495.62    | 0.00005        | 0.5          |
| DMPA     | 256.30     |                |              |

In total, 0.0005 mol of monomer mixture was prepared.

## Required weight

0.0004975 moles of HEMA, M \* mw = mass; therefore 0.0004975 [mol] x 130.14 [g/mol] = 0.06474465 g 0.0000025 moles of TACPP, M \* mw = mass; therefore 0.0000025 [mol] x 1495.62 [g/mol] = 0.00373905 g

#### Required volume

 $V = m / \rho$ , therefore for HEMA, V = 0.06474465 [g] / 1.07 [g/ml] = 60.51  $\mu$ l  $V = m / \rho$ , therefore for TACPP, V = 0.00373905 [g] / 0.08 [g/ml] = 46.74  $\mu$ l

Photoinitiator: DMPA (0.001 g)

Total volume:  $\sim 107 \ \mu l$ 

# Porphyrin-based Holographic Sensor and its Bragg diffraction

The fabricated sensor showed visible-light Bragg diffraction (Figure S1).

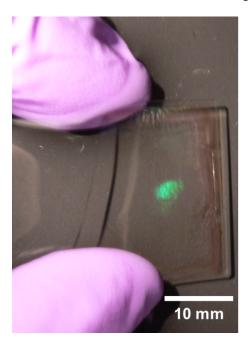
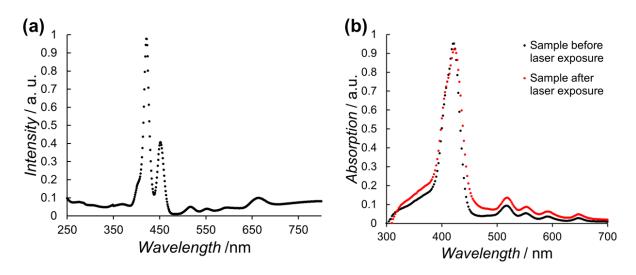
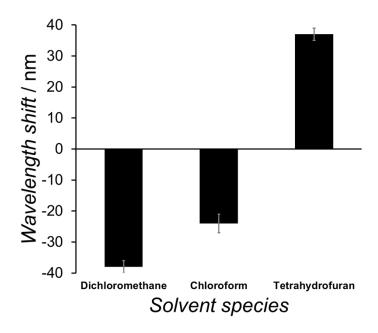




Figure S1. Tunable holographic sensor

# **Characterisation of the Porphyrin**


UV-Vis measurements were taken to characterise the compound (Figure S2a) and polymer matrix before and after laser exposure (Figure S2b).



**Figure S2.** Ultraviolet-visible spectroscopy of (a) TACPP **2** in solution showing peaks at 422 nm (soret band) and 453 nm, (b) sample before and after laser-light exposure.

# The system's response to pure organic solvents

Wavelength shifts were recorded at -38, -24 and 37 nm deviated from ~320 nm for pure dichloromethane, chloroform and tetrahydrofuran, respectively (Figure S3).



**Figure S3.** The response of the sensor to various organic solvents.

# The influence of pH change on the absorption characteristics of the hologram

Upon changing the pH of the pHEMA-TACPP system from 7.0 to 3.0, the absorption showed a shift from 420 nm (pH 7.0) to 425 nm (pH 3.0) (Figure S4).

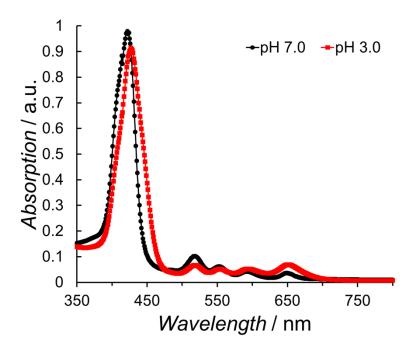
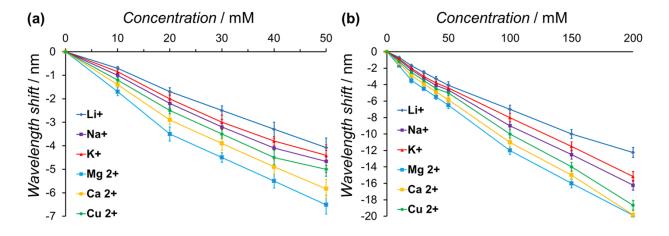
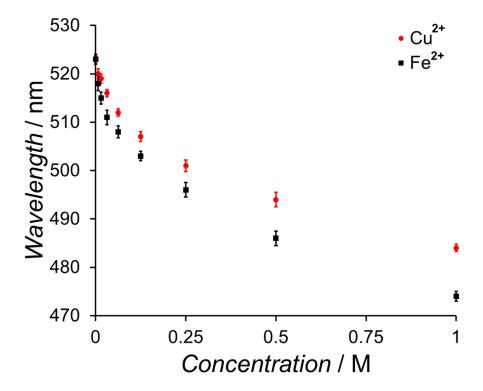




Figure S4. Ultraviolet-visible spectroscopy of pHEMA-TACPP system

## The influence of low ionic strength on the sensor response


Different ionic strengths at low concentrations were tested with the fabricated sensor. Figure S5 shows the diffraction measurements.



**Figure S5.** The effect of ionic strength on the sensor response (Donnan osmotic pressure (dominant) and the chelation effect)

# The influence of high ionic strength on the sensor response

High concentrations of ionic strength cause the polymer to shrink due to the Donnan osmotic pressure (Figure S6).



**Figure S6.** Shrinkage in the system due to the Donnan osmotic pressure.